12. Kostant's Theorem for a Certain Class of Generalized Kac-Moody Algebras

By Satoshi Naito
Department of Mathematics, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1992)

Introduction. Let $A=\left(a_{i j}\right)_{i, j \in I}$ be a real $n \times n$ matrix satisfying the following conditions:
(C1) either $a_{i i}=2$ or $a_{i i} \leq 0$;
(C2) $\quad a_{i j} \leq 0$ if $i \neq j$, and $a_{i j} \in Z$ if $a_{i i}=2$;
(C3) $a_{i j}=0$ implies $a_{j i}=0$.
Such a matrix is called a generalized GCM (=GGCM). And let $g(A)$ be the generalized Kac-Moody algebra (=GKM algebra), over the complex number field C, associated to the above GGCM A. Then, we have the root space decomposition : $\mathfrak{g}(A)=\mathfrak{h} \oplus \sum_{\alpha \in \Delta}^{\oplus} \mathfrak{g}_{\alpha}$, where \mathfrak{h} is the Cartan subalgebra, and Δ the root system of $(\mathfrak{g}(A), \mathfrak{h})$. Let J be a subset of $I^{r e}:=$ $\left\{i \in I \mid a_{i i}=2\right\}$. And put $\mathfrak{n}_{J}^{ \pm}:=\sum_{a \in \Lambda_{J}^{+}}^{\oplus} \mathfrak{g}_{ \pm a}, \mathfrak{u}^{ \pm}:=\sum_{\neq \Delta^{+}(J)}^{\oplus} \mathfrak{g}_{ \pm \alpha}, \mathfrak{m}:=\mathfrak{n}_{J}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{J}^{+}$, where $\Delta_{J}^{+}:=\Delta \cap \sum_{i \in J} Z_{\geq 0} \alpha_{i}, \Delta^{+}(J):=\Delta^{+} \backslash \Delta_{J}^{+}$. In this paper, we study the homology $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)$ of \mathfrak{u}^{-}and the cohomology $H^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right)$ of \mathfrak{u}^{+}with coefficients in the irreducible highest weight $g(A)$-module $L(\Lambda)$ with highest weight $\Lambda \in \mathfrak{h}^{*}$. And we prove "Kostant's homology and cohomology theorem" for symmetrizable GKM algebras associated to GGCMs satisfying the following condition ($\hat{\mathrm{C}} 1$) instead of (C1) above:
(C 1$)$ either $a_{i i}=2$ or $a_{i i}=0$.
This result is a generalization of Kostant's Theorem for Kac-Moody algebras, which was proved by J. Lepowsky and H. Garland ([2] and [5]), or the classical result of B. Kostant himself [4] for finite dimensional complex semi-simple Lie algebras.
§ 1. Preliminaries for GKM algebras. We prepare some basic results for GKM algebras which will be needed later. For details, see [1] and [3]. Let $g(A)$ be the GKM algebra associated to a GGCM A, with the Cartan subalgebra \mathfrak{h}, simple roots $\Pi=\left\{\alpha_{i}\right\}_{i \in I}$, and simple co-roots $\Pi^{\vee}=$ $\left\{\alpha_{i}^{\vee}\right\}_{i \in I}$. From now on, we always assume that the GGCM $A=\left(\alpha_{i j}\right)_{i, j \in I}$ is symmetrizable, and that J is a subset of $I^{r e}=\left\{i \in I \mid a_{i i}=2\right\}$. We call an \mathfrak{h}-module $V \mathfrak{h}$-diagonalizable if V admits a weight space decomposition: $V=\sum_{i \in \mathscr{P}(V)}^{\oplus} V_{\lambda}$, where $\mathscr{P}(V)$ is the set of all weights of V.

Definition ([6]). \mathcal{O}_{J} is the category of all \mathfrak{m}-modules whose objects V satisfy the following :
(1) V is \mathfrak{h}-diagonalizable;
(2) the weight space V_{μ} is finite dimensional for all $\mu \in \mathscr{P}(V)$;
(3) there exist a finite number of elements $\lambda_{i}(1 \leq i \leq s)$ in $\mathfrak{b}^{*}:=$
$\operatorname{Hom}_{c}(\mathfrak{h}, C)$ such that $\mathscr{P}(V) \subset \bigcup_{i=1}^{s} D\left(\lambda_{i}\right)$, where $D\left(\lambda_{i}\right):=\left\{\lambda_{i}-\beta \mid \beta \in Q_{+}=\right.$ $\left.\sum_{j \in I} Z_{Z 0} \alpha_{j}\right\}(1 \leq i \leq s)$.
(4) Viewed as an m-module, V is a direct sum of irreducible highest weight m-modules $L_{\mathrm{m}}(\lambda)$. with highest weight $\lambda \in P_{J}^{+}:=\left\{\mu \in \mathfrak{h}^{*} \mid\left\langle\mu, \alpha_{i}^{\vee}\right\rangle \in Z_{\geq 0}\right.$ $(i \in J)\}$.

Note that the category \mathcal{O}_{J} is closed under the operations of taking submodules, quotients, and finite direct sums. Moreover, a tensor product of a finite number of modules from \mathcal{O}_{J} is again in the category \mathcal{O}_{J}, due to [3, Theorem 10.7 b)].

The following proposition plays a fundamental role in this paper.
Proposition I ([6]). Let $\Lambda \in P^{+}:=\left\{\lambda \in \mathfrak{h}^{*} \mid\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \geq 0(i \in I)\right.$, and $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle$ $\in \boldsymbol{Z}_{\geq 0}$ if $\left.a_{i i}=2\right\}$. Then, $L(\Lambda)$ and $\left(\bigwedge^{j} \mathfrak{H}^{-}\right) \otimes_{C} L(\Lambda)(j \geq 0)$ are in the category \mathcal{O}_{J}, where $\wedge^{\mathfrak{j}} \mathfrak{H}^{-}$is the exterior algebra of degree j over $\mathfrak{u}^{-}(j \geq 0)$, and is an \mathfrak{m}-module by the adjoint action since $\left[\mathfrak{m}, \mathfrak{u}^{-}\right] \subset \mathfrak{u}^{-}$.

Now, we introduce the algebra \mathcal{E}_{J} of "formal \mathfrak{m}-characters" of \mathfrak{m} modules from the category \mathcal{O}_{J}. The elements of \mathcal{E}_{J} are series of the form $\sum_{\lambda \in P_{J}^{+}} c_{\lambda} e_{\mathrm{m}}(\lambda)$, where $c_{\lambda} \in C$ and $c_{\lambda}=0$ for λ outside a finite union of the sets of the form $D(\mu)\left(\mu \in \mathfrak{h}^{*}\right)$. Here, the elements $e_{\mathrm{m}}(\lambda)$ are called formal mexponentials. They are linearly independent and are in one-one correspondence with the elements $\lambda \in P_{J}^{+}$.

For a module V in the category \mathcal{O}_{J}, we define the formal \mathfrak{m}-character $\operatorname{ch}_{\mathrm{m}} V$ of V by $\operatorname{ch}_{\mathrm{m}} V:=\sum_{\lambda \in P_{f}^{+}}\left[V: L_{\mathrm{m}}(\lambda)\right] e_{\mathrm{m}}(\lambda)$, where $\left[V: L_{\mathrm{m}}(\lambda)\right]$ is the "multiplicity" of $L_{\mathrm{m}}(\lambda)$ in V (see [3, Ch. 9, Lemma 9.6]). Note that, for a module V in the category $\mathcal{O}_{J},\left[V: L_{\mathrm{m}}(\lambda)\right]\left(\lambda \in P_{J}^{+}\right)$is finite and so $\mathrm{ch}_{\mathrm{m}} V$ is an element of the algebra \mathcal{E}_{J}. Then, the multiplication of \mathcal{E}_{J} is defined by $e_{\mathrm{m}}(\lambda) \cdot e_{\mathrm{m}}(\mu):=\operatorname{ch}_{\mathrm{m}}\left(L_{\mathrm{m}}(\lambda) \otimes_{C} L_{\mathrm{m}}(\mu)\right)\left(\lambda, \mu \in P_{J}^{+}\right)$. Thus, \mathcal{E}_{J} becomes a commutative associative algebra over \boldsymbol{C}.

Especially when $J=\phi$, the algebra \mathcal{E}_{J} is nothing but the algebra \mathcal{E} in [3, Ch. 9], since in this case $\mathfrak{m}=\mathfrak{h}, P_{J}^{+}=\mathfrak{h}^{*}$, and $e_{\mathfrak{m}}(\lambda)=e(\lambda)\left(\lambda \in P_{J}^{+}=\mathfrak{h}^{*}\right)$. Now, let $(\cdot \mid \cdot)$ be a fixed standard bilinear form on $\mathfrak{b}^{*}, \Pi^{i m}$ (resp. $\Pi^{r e}$) be the subset $\left\{\alpha_{i} \in \Pi \mid a_{i i} \leq 0\right.$ (resp. $\left.\left.a_{i i}=2\right)\right\}$ of Π, and $W \subset G L\left(\mathfrak{h}^{*}\right)$ be the $W e y l$ group generated by the fundamental reflections r_{i} defined by $\alpha_{i} \in \Pi^{r e}$. And let \subseteq be the set of all sums of distinct pairwise perpendicular elements, with respect to $(\cdot \mid \cdot)$, from $\Pi^{i m}$. Note that $\{0\} \cup \Pi^{i m}$ is contained in \subseteq. Then, we know the following character formula.

Theorem I ([1] and [3]). Let $\Lambda \in P^{+}$and $\mathbb{S}(\Lambda):=\{\lambda \in \mathbb{S} \mid(\lambda \mid \Lambda)=0\}$. And we put

$$
S_{\Lambda}:=e(\Lambda+\rho) \cdot \sum_{\beta \in \odot(\Lambda)} \varepsilon(\beta) e(-\beta), \quad R:=\prod_{\alpha \in \Lambda_{+}}(1-e(-\alpha))^{\text {mult }(\alpha)},
$$ where $\varepsilon(\beta)=(-1)^{m}$ if $\beta \in \mathbb{S}$ is a sum of m elements from $\Pi^{i m}, \rho \in \mathfrak{h}^{*}$ is a fixed element such that $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=(1 / 2) \cdot a_{i i}(i \in I)$, and mult $(\alpha):=\operatorname{dim}_{C} \mathfrak{g}_{\alpha}$ $\left(\alpha \in \Delta^{+}\right)$. Then, there holds in the algebra $\mathcal{E}=\mathcal{E}_{\phi}$,

$$
e(\rho) \cdot R \cdot \operatorname{ch} L(\Lambda)=\sum_{w \in W}(\operatorname{det} w) w\left(S_{\Lambda}\right)
$$

with $w(e(\mu)):=e(w(\mu))\left(\mu \in \mathfrak{h}^{*}\right)$.
Corollary I ([1] and [3]). We put $S:=e(\rho) \cdot \sum_{\beta \in \subseteq} \varepsilon(\beta) e(-\beta)$. Then,

$$
e(\rho) \cdot R=\sum_{w \in W}(\operatorname{det} w) w(S) .
$$

Remark 1.1. The above statement of Theorem I (resp. Corollary I) is the corrected version of Theorem 11.13.3 (resp. Corollary 11.13.2) in [3].
§ 2. Homology and cohomology of GKM algebras. In this section, we will review the notion of homology and cohomology of Lie algebras. Let $L(\Lambda)$ be the irreducible highest weight $g(A)$-module with highest weight $\Lambda \in P^{+}$. Then, the vector space $C^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right)$ of j cochains is defined by $C^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right):=\operatorname{Hom}_{C}^{c}\left(\bigwedge^{j} \mathfrak{u}^{+}, L(\Lambda)\right.$, and is an mt-module in a usual sense $(j \geq 0)$. Here, for \mathfrak{G}-diagonalizable modules $V=\sum_{i \in \mathfrak{b}^{*}}^{\oplus} V_{\lambda}$ and $W=\sum_{\mu \in \mathfrak{b}^{*}}^{\oplus} W_{\mu}$ with finite dimensional weight spaces, we put
$\operatorname{Hom}_{C}^{c}(V, W):=\left\{f \in \operatorname{Hom}_{C}(V, W) \mid f\left(V_{\lambda}\right)=0\right.$ for all but finitely many weights $\lambda \in \mathfrak{h}^{*}$ of $\left.V\right\}$.
The coboundary operator $d^{j}: C^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right) \rightarrow C^{j+1}\left(\mathfrak{u}^{+}, L(\Lambda)\right)$ is defined by
$\left(d^{j} f\right)\left(x_{1} \wedge \cdots \wedge x_{j} \wedge x_{j+1}\right):=\sum_{i=1}^{j+1}(-1)^{i} x_{i}\left(f\left(x_{1} \wedge \cdots \wedge \hat{x}_{i} \wedge \cdots \wedge x_{j+1}\right)\right)$

$$
+\sum_{1 \leq r<t \leq j+1}(-1)^{r+t} f\left(\left[x_{r}, x_{t}\right] \wedge x_{1} \wedge \cdots \wedge \hat{x}_{r} \wedge \cdots \wedge \hat{x}_{t} \wedge \cdots \wedge x_{j+1}\right)
$$

where $x_{1}, \cdots, x_{j+1} \in \mathfrak{u}^{+}, f \in C^{j}\left(\mathfrak{H}^{+}, L(\Lambda)\right)$, and the symbol \hat{x}_{i} indicates a term to be omitted. The cohomology of this complex $\left\{C^{j}\left(\mathfrak{H}^{+}, L(\Lambda)\right), d^{j}\right\}_{j \in Z}$ is called the $j^{t h}$ cohomology of \mathfrak{u}^{+}with coefficients in $L(1)$, and is denoted by $H^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right)$. Then, $H^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right)$ is also an $\mathfrak{n t}$-module, since the coboundary operator d^{j} commutes with the action of \mathfrak{m}.

For the homology, we define the vector space $C_{j}\left(\mathfrak{H}^{-}, L(\Lambda)\right)$ of j chains to be $\wedge^{j} \mathfrak{u}-\otimes_{C} L(\Lambda)$, which is an m-module in a usual sense $(j \geq 0)$. The boundary operator $d_{j}: C_{j}\left(\mathfrak{H}^{-}, L(\Lambda)\right) \rightarrow C_{j-1}\left(\mathfrak{H}^{-}, L(\Lambda)\right)$ is defined by

$$
\begin{aligned}
& d_{j}\left(y_{1} \wedge\right.\left.\cdots \wedge y_{j} \otimes v\right): \\
&+\sum_{1 \leq r<t \leq j}(-1)_{i=1}^{j+t}(-1)^{i}\left(y_{1} \wedge \cdots \wedge \hat{y}_{i} \wedge \cdots \wedge y_{j}\right) \otimes y_{i}(v) \\
&\left.\left.y_{t}\right] \wedge y_{1} \wedge \cdots \wedge \hat{y}_{r} \wedge \cdots \wedge \hat{y}_{t} \wedge \cdots \wedge y_{j}\right) \otimes v
\end{aligned}
$$

where $y_{1}, \cdots, y_{j} \in \mathfrak{H}^{-}, v \in L(\Lambda)$. And we have the similar situation as in the case of cohomology.

Remark 2.1. In this paper, the cohomology $H^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right)$ of \mathfrak{u}^{+}is different from the usual one, since we have used $\operatorname{Hom}_{C}^{c}\left(\wedge^{\mathfrak{j}}{ }^{+}, L(\Lambda)\right)$ instead of $\operatorname{Hom}_{C}\left(\wedge^{j} \mathfrak{U}^{+}, L(\Lambda)\right)$ as $C^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right)(j \geq 0)$.
§ 3. Kostant's Theorem for GKM algebras. Let $g(A)$ be the GKM algebra associated to a symmetrizable GGCM $A=\left(a_{i j}\right)_{i, j \in I}$. For a subset J of $I^{r e}$, we put $A_{J}:=\left(\alpha_{i j}\right)_{i, j \in J}$, which is a generalized Cartan matrix ($=$ GCM). Then, since the triple $\left(\mathfrak{h},\left\{\alpha_{i}\right\}_{i \in J},\left\{\alpha_{i}^{\vee}\right\}_{i \in J}\right)$ is a realization (but not a minimal one) of the GCM A_{J}, the subalgebra \mathfrak{m} of $\mathfrak{g}(A)$ can be regarded as a KacMoody algebra associated to the GCM A_{J}, whose Cartan subalgebra is \mathfrak{h}. So, the well-known representation theory for Kac-Moody algebras is also applicable to the subalgebra \mathfrak{m} of $g(A)$ (cf. [3, Chs. 9 and 10]).
3.1. Results of L. Liu. Here, we rewrite, in the case of GKM algebras, some of Liu's results on m-modules $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)$ and $H^{j}\left(\mathfrak{u}^{+}, L(\Lambda)\right)$ for Kac-Moody algebras. The proofs of these results for GKM algebras need no modifications. For details, see [6] and also the appendix of [2].

Proposition 3.1 ([6]). $\quad H^{j}\left(\mathfrak{H}^{+}, L(\Lambda)\right)$ is isomorphic to $H_{j}\left(\mathfrak{H}^{-}, L(\Lambda)\right)$ as $\mathfrak{m -}$ modules for any $\Lambda \in P^{+}$and $j \in Z_{z 0}$.

Due to this, it is enough for us to consider $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)(j \geq 0)$ only. And, since $L(\Lambda)$ and $\left(\bigwedge_{\mathfrak{H}^{-}}\right) \otimes_{C} L(\Lambda)$ are in the category \mathcal{O}_{J} by Proposition I, $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)$ is also in \mathcal{O}_{J}, and is a direct sum of $L_{\mathrm{m}}(\mu), \mu \in P_{J}^{+}$, as $\mathfrak{m}-$ modules ($j \geq 0$). Furthermore, we have

Proposition 3.2 ([6]). Let (.|.) be a standard bilinear form on \mathfrak{h}^{*}. Then, for any $\Lambda \in P^{+}$and $j \in Z_{\geq 0}$, every m-irreducible component of $H_{j}\left(\mathfrak{u}^{-}, L(\Lambda)\right)$ is of the form $L_{\mathrm{m}}(\mu), \mu \in P_{J}^{+}$, with $(\mu+\rho \mid \mu+\rho)=(\Lambda+\rho \mid \Lambda+\rho)$.
3.2. Main theorem. From now on, we assume that the symmetrizable GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ satisfies the following condition ($\hat{\mathrm{C}} 1$):
(C 1$)$ either $a_{i i}=2$ or $a_{i i}=0(i \in I)$.
Then, from Theorem I and Corollary I, we get the following.
Lemma 3.1. $e(\rho) \cdot \operatorname{ch}\left(\bigwedge \mathfrak{n}^{-}\right)=\operatorname{ch}\left(\sum_{\beta \in \mathscr{G}}^{\oplus} L(\rho-\beta)\right)$, with $\mathfrak{n}^{-}:=\sum_{\alpha \in J^{+}}^{\oplus} \mathfrak{g}_{-\alpha}$.
Remark 3.1. By the condition ($\hat{\mathrm{C} 1}$), $\rho-\beta \in P^{+}$for all $\beta \in \mathbb{S}$.
From the above lemma, it follows that, for every $\Lambda \in \mathfrak{h}^{*}$,

$$
e(\rho) \cdot \operatorname{ch}\left(\left(\wedge \mathfrak{n}^{-}\right) \otimes_{c} L(\Lambda)\right)=\operatorname{ch}\left(\left(\sum_{\beta \in \mathscr{E}}^{\oplus} L(\rho-\beta)\right) \otimes_{c} L(\Lambda)\right)
$$

Therefore, μ is a weight of $\left(\wedge \mathfrak{n}^{-}\right) \otimes_{C} L(\Lambda)$ if and only if $\mu+\rho$ is a weight of $\left(\sum_{\beta \in \mathscr{S}}^{\oplus} L(\rho-\beta)\right) \otimes_{C} L(\Lambda)$, and moreover, they have the same multiplicity. Using this fact, we can show

Lemma 3.2. Let $\Lambda \in P^{+}$. Assume that μ is a weight of $\left(\bigwedge^{j^{-}}\right) \otimes_{c} L(\Lambda)$ for some $j \geq 0$, and satisfies $(\mu+\rho \mid \mu+\rho)=(\Lambda+\rho \mid \Lambda+\rho)$. Then,
(a) there exist $a \beta \in \mathbb{S}(\Lambda)$ and $a w \in W(J):=\left\{w \in W \mid w\left(\Delta^{-}\right) \cap \Delta^{+} \subset \Delta^{+}(J)\right\}$, such that $\ell(w)+h t(\beta)=j$ and $\mu=w(\Lambda+\rho-\beta)-\rho$;
(b) the multiplicity of μ in $\left(\wedge^{j^{\prime}}\right) \otimes_{C} L(\Lambda)$ is equal to one.

Here, $\ell(w)$ is the length of $w \in W$, and $h t(\beta)=m$ if $\beta \in \mathbb{S}$ is a sum of m distinct elements from $\Pi^{i m}$.

By Proposition 3.2 and Lemma 3.2, we have the following.
Proposition 3.3. Let $\Lambda \in P^{+}$and $j \in Z_{z 0}$. If $L_{\mathrm{m}}(\mu)\left(\mu \in P_{J}^{+}\right)$is an $\mathfrak{m t}$ irreducible component of $H_{j}\left(\mathrm{H}^{-}, L(\Lambda)\right)$, then
(a) $\mu=w(\Lambda+\rho-\beta)-\rho$, for some $\beta \in \mathbb{S}(\Lambda)$ and some $w \in W(J)$, such that $\ell(w)+h t(\beta)=j$;
(b) $L_{\mathrm{m}}(\mu)$ occurs with multiplicity one as \mathfrak{m}-irreducible components of $H_{j}\left(\mathrm{Ht}^{-}, L(\Lambda)\right)$.

Now, from Theorem I and the Euler-Poincaré principle (cf. [2]), we get the following.

Lemma 3.3. For $\Lambda \in P^{+}$, there holds in the algebra \mathcal{E}_{J}, $\sum_{\rho \geq 0}(-1)^{j} \mathrm{ch}_{\mathrm{m}}\left(H_{j}\left(\mathbb{H}^{-}, L(\Lambda)\right)\right)=\sum_{\beta \in \mathscr{G}(\Lambda)} \varepsilon(\beta) \sum_{w \in W(J)}(\operatorname{det} w) e_{\mathrm{m}}(w(\Lambda+\rho-\beta)-\rho)$.

Remark 3.2. For $w \in W(J)$ and $\beta \in \mathbb{S}, w(\Lambda+\rho-\beta)-\rho \in P_{J}^{+}$.
By Proposition 3.3 and Lemma 3.3, we have
Proposition 3.4. Let $\Lambda \in P^{+}$and fix $j \in \boldsymbol{Z}_{\geq 0}$. For each $\beta \in \mathbb{S}(\Lambda)$ and $w \in W(J)$ such that $\ell(w)+h t(\beta)=j$, we put $\mu:=w(\Lambda+\rho-\beta)-\rho$. Then, $L_{\mathrm{m}}(\mu)$ occurs as \mathfrak{m}-irreducible components of $H_{j}\left(\mathfrak{H}^{-}, L(\Lambda)\right)$.

Summarizing Propositions 3.1, 3.3, and 3.4, we obtain our main theorem.

Theorem 3.1. Let $\mathfrak{g}(A)$ be the GKM algebra associated to a symmetrizable GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ satisfying ($\hat{\mathrm{C} 1} 1$). And let $L(4)$ be the irreducible highest weight $\mathfrak{g}(A)$-module with highest weight $\Lambda \in P^{+}$. We assume that the subset J of I is contained in $I^{r e}$. Then, for $j \geq 0$,

$$
H^{j}\left(\mathfrak{H}^{+}, L(\Lambda)\right) \cong H_{j}\left(\mathfrak{H}^{-}, L(\Lambda)\right) \cong \sum_{\beta \in \subseteq(\Lambda)}^{\oplus} \sum_{\substack{w \in W(J) \\ \ell(w)=j-h t(\beta)}} L_{\mathrm{m}}(w(\Lambda+\rho-\beta)-\rho)
$$

as m -modules. Here, $L_{\mathrm{m}}(\mu)\left(\mu \in P_{J}^{+}\right)$is the irreducible highest weight $\mathfrak{m}-$ module with highest weight μ.

Remark 3.3. When A is a GCM (i.e., $a_{i i}=2$ for all i), $\mathbb{S}(\Lambda)$ consists of only one element $0 \in \mathfrak{h}^{*}$. Hence, in this case, the above theorem is nothing but the well-known Kostant's Theorem for Kac-Moody algebras (see [2] and [5]).

References

[1] R. Borcherds: Generalized Kac-Moody algebras. J. Algebra, 115, 501-512 (1988).
[2] H. Garland and J. Lepowsky: Lie algebra homology and the Macdonald-Kac formulas. Invent. math., 34, 37-76 (1976).
[3] V. G. Kac: Infinite Dimensional Lie Algebras. 3rd ed., Cambridge University Press, Cambridge (1990).
[4] B. Kostant: Lie algebra cohomology and generalized Borel-Weil theorem. Annals of Math., 74, 329-387 (1961).
[5] J. Lepowsky: Generalized Verma modules, loop space cohomology and Macdonaldtype identities. Ann. scient. Éc. Norm. Sup., 12, 169-234 (1979).
[6] L. Liu: Kostant's formula for Kac-Moody Lie algebras. Yale University dissertation (1990).

