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Introduction. Let A=(a,),,e, be a real nn matrix satisfying the
following conditions"

(C1) either a**=2 or a**_0;
(C2) a,_0 if i:/:], and a, e Z if a**=2;
(C3) a,=0 implies a,=0.

Such a matrix is called a generalized GCM (-GGCM). And let fi(A) be
the generalized Kac-Moody algebra (=GKM algebra), over the complex
number field C, associated to the above GGCM A. Then, we have the
root space decomposition" fi(A)--)q.e., where ) is the Caftan sub-
algebra, and z/ the root system of ((A), )). Let J be a subset of
{iella 2}. And put n =%o,. =%.() m

+where A5 --z/ eZ0a, (J) --z/ \z/5 In this paper, we study the
homology H(u-, L(A)) of u- and the cohomology H(u /, L(A)) of u with
coefficients in the irreducible highest weight g(A)-module L(A) with highest
weight A e *. And we prove "Kostant’s homology and cohomology theo-
rem" for symmetrizable GKM algebras associated to GGCMs satisfying
the following condition ((1) instead of (C1) above"

(1) either a=2 or a=0.
This result is a generalization of Kostant’s Theorem for Kac-Moody

algebras, which was proved by J. Lepowsky and H. Garland ([2] and [5]),
or the classical result of B. Kostant himself [4] for finite dimensional
complex semi-simple Lie algebras.

1. Preliminaries or GKM algebras. We prepare some basic re-
sults for GKM algebras which will be needed later. For details, see [1]
and [3]. Let (A) be the GKM algebra associated to a GGCM A, with the
Cartan subalgebra , simple roots 11=(o}, and simple co-roots //v:

(a}. From now on, we always assume that the GGCM A:(a),e is
symmetrizable, and that J is a subset of Ire--(i e I la--2}. We call an
-module V -diagonalizable if V admits a weight space decomposition"
V ez() V, where (V) is the set of all weights of V.

Definition ([6]). C)j is the category of all m-modules whose objects V
satisfy the following"

(1) V is )-diagonalizable;
( 2 ) the weight space V, is finite dimensional for all/ e (V)
(3) there exist a finite number of elements (1-_i_s) in *’:
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Homc(j, C) such that (V)c__, D(2,), where D(2) {2,- fllfl e Q
se Zoo:} (l_i_s).

( 4 ) Viewed as an m-module, V is a direct sum of irreducible highest
weight n-modules L(), with highest weight e P := {Z e * (Z, av} e
(i e J)}.

Note that the category (C) is closed under the operations of taking
submodules, quotients, and finite direct sums. Moreover, a tensor prod-
uct of a finite number of modules ]rom is again in the category
due to [3, Theorem 10.7 b)].

The following proposition plays a fundamental role in this paper.
Proposition I ([6]). Let A e P+ := {2 e lj* (2, av ) _0 (i e I), and (2,

e Zo if ai=2}. Then, L(A) and (/su-)(R)eL(A) (]_0) are in the category
)j, where - is the exterior algebra of degree ] over - (]_0), and is
an m-module by the adjoint action since [u,

Now, we introduce the algebra C of "formal m-characters" of m-
modules from the category . The elements of are series of the form
e,: ce(2), where c e C and c=0 for 2 outside a finite union of the sets
of the form D(/a)(/ e *). Here, the elements e.,(2) are called formal
exponentials. They are linearly independent and are in one-one corre-
spondence with the elements 2 e P.

For a module V in the category )j, we define the formal m-character
ch,V of V by chmV:=p [V: Lm(2)]e(2), where [V: L(2)] is the "multi-
plicity" of L(2) in V (see [3, Ch. 9, Lemma 9.6]). Note that, for a module
V in the category )z, [V: L(2)] (2 e P) is finite and so chV is an ele-
ment of the algebra C. Then, the multiplication of z is defined by
e(2), e(/):=chm(L(2)(R)c L(/D) (2,/a e P). Thus, j becomes a commuta-
tive associative algebra over C.

Especially when J=, the algebra ’z is nothing but the algebra in
[3, Ch. 9], since in this case m--), P=)*, and e(2)=e(2) (2 e P=*).
Now, let (. I’) be a fixed standard bilinear form on b*, HTM (resp. H) be
the subset {aie II]a _0 (resp. a =2)} of H, and WcGL(*) be the Weyl
group generated by the fundamental reflections r defined by a e H
And let (R) be the set of all sums of distinct pairwise perpendicular ele-
ments, with respect to (. I’), rom H. Note that {0} [A// is contained
in (R). Then, we know the following character formula.

Theorem I ([1] and [3]). Let AeP+ and (A):={2e
And we put

S:---e(A+p)’,ee() dfl)e(-fl), R := ,e+ (1-- e(--a))m("),
where e(fl)=(--1) if fl is a sum of m elements from I1, p e * is a

fixed element such that (p,a)--(1/2).ai (ieI), and mult(a):--dimc,
(a e A/). Then, there holds in the algebra

e(p) R .ch L(A)= (det w)w(S),
with w(e(/)):--e(w(p)) (/ e *).

Corollary I ([1] and [3]). We put S:-e(p).e(R)e(/9)e(-/9). Then,



No. 2] Generalized Kac-Moody Algebras 45

e(p). R .e (det w)w(S).
Remark 1.1. The above statement of Theorem I (resp. Corollary I) is

the corrected version of Theorem 11.13.3 (resp. Corollary 11.13.2) in [3].
2. Homology and cohomoloy of GKM algebras. In this section,

we will review the notion of homology and cohomology of Lie algebras.
Let L(A) be the irreducible highest weight (A)-module with highest
weight A e P/. Then, the vector space C(u /, L(A)) of cochains is defined
by C(t /, L(A))" Hom(//, L(A)), and is an m-module in a usual sense
(]0)._ Here, or -diagonalizable modules V ,.V and W ,. W,
with finite dimensional weight spaces, we put

Hom (V, W) "= {f e Home (V, W)]f(V)=0 for all but finitely
many weights 2 e * of V}.

The coboundary operator d" C(u/,L(A))--C+(t /, L(zl)) is defined by
(df)(x,A AxAx+,)’=+(-1)x(f(xA A2A. AXe/l))

+<t_</ (-- 1)/f([x, x]Ax A.. A2A. A2A... Ax/),
where x, ..., x/ e /, f e C(/, L(A)), and the symbol 2 indicates a term
to be omitted. The cohomology of this complex {C(/,L(zl)), d}ez is
called the ’ cohomology of with coefficients in L{zl), and is denoted by
H(*, L(z/)). Then, H( *, L(A)) is also an m-module, since the coboundary
operator d commutes with the action of m.

For the homology, we define the vector space C(-, L(zl)) of chains
to be A-(R)cL(A), which is an -module in a usual sense (]_0). The
boundary operator d" C.(t-, L(zl))--C_(w-, L(A)) is defined by
d(y A.. Ay.(R)v)" ]; (- 1)(y A. AA. Ay)(R)y(v)

+,<<_ (-1)+ ([Yr, y]AyA A?A... A?A... Ay.)(R)v,
where y,..., y e u-, v e L(A). And we have the similar situation as in
the case o cohomology.

Remark 2.1. In this paper, the co.homology H(rt/,L(A)) of t is
different from the usual one, since we have used Hom(A/, L(zl)) in-
stead of Home (A. /, L(zl)) as C(/, L(A)) (]_0).

:. Kostant’s Theorem for GKM algebras. Let (A) be the GKM
algebra associated to a symmetrizable GGCM A =(ai),je. For a subset J
of Ire, we put A =(a,),,ez, which is a generalized Cartan matrix (=GCM).
Then, since the triple (, {a,},ez, {a},e) is a realization (but not a minimal
one) of the GCM Az, the subalgebra m of (A) can be regarded as a Kac-
Moody algebra associated to the GCM A, whose Cartan subalgebra is .
So, the well-known representation theory for Kac-Moody algebras is also
applicable to the subalgebra m of (A) (c. [3, Chs. 9 and 10]).

:.1. Results of L. Liu. Here, we rewrite, in the case of GKM alge-
bras, some of Liu’s results on m-modules Hj(u-, L(A)) and HJ( +, L(A)) for
Kac-Moody algebras. The proofs of these results for GKM algebras need
no modifications. For details, see [6] and also the appendix of [2].

Proposition :}.1 ([6]). H(n /, L(zt)) is isomorphic to H(-, L(A)) as m-
modules for any A e P/ and ] e Zo.
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Due to this, it is enough for us to consider H(u-, L(A)) (j0) only.
And, since L(A)and (/u-)(R)cL(A)are in the category ) by Proposition
I, H(u-, L(A)) is also in , and is a direct sum of L(p),/ e PJ, as m-
modules (]_0). Furthermore, we have

Proposition 3.2 ([6]). Let (. 1.) be a standard bilinear form on *.
Then, for any AeP and ]eZo, every m-irreducible component of
H(u-,L(A)) is of the form L(ID, leP, with (f+plf+p)=(A+plA+p).

3.2. Main theorem. From now on, we assume that the symmetriz-
able GGCM A=(a),e satisfies the following condition (1)"

(1) either a--2 or a=0 (i e I).
Then, from Theorem I and Corollary I, we get the follvwing.

Lemma 3.1. e(p).ch (/n-)--ch (e(R)L(p--fl)), with -"--+ _,.
Remark 3.1. By the condition ((1), p-fl e P+ for all fle (R).

From the above lemma, it ollows that, or every A e *,
e(p) .ch ((/ n-)(R)c L(A)) ch ((e (R) L(p-- fl))(R)c L(A)).

Therefore,/ is a weight of (/n-)(R)cL(A) if and only if/+p is a weight of
(eL(p--fl))(R)cL(A), and moreover, they have the same multiplicity.
Using this fact, we can show

Lemma 3.2. Let A e P+. Assume that [ is a weight of (/ -)(R)c L(A)
for some j>_O, and satisfies (f+pll+p)=(A+plA+p). Then,

(a) there exist a fl e (R)(A) anda w e W(J) :={w e Wlw(A-)A z/+(J)},
such that g(w)+ht(fl)=j and

(b) the multiplicity of f in (/u-)(R)cL(A) is equal to one.
Here, g(w) is the length of w e W, and ht()=m if e (R) is a sum of m

distinct elements from H.
By Proposition 3.2 and Lemma 3.2, we have the following.

Proposition :.:. Let A e P+ and j e Zo. If L(I) (l e P) is an

irreducible component of H(-, L(A)), then
a ) [=w(A+p- fl)- p, for some fl e (R)(A) and some w e W(J), such

that g(w) + ht(fl) j
(b) L(I) occurs with multiplicity one as m-irreducible components

o HOt-, L(A)).
Now, from Theorem I and the Euler-Poinear6 principle (el. [2]), we

get the following.

Lemma 3.3. For A P+, here holds in he algebra ,
0(-- 1) ch ,(H(a-, L(A))) (R)) (/) w() (de w)e.,(w(A+ p-- )-- p).

Remark 3.2. For w e W(J) and fle (R), w(A+ p-- fl)-- p e P.
By Proposition 3.3 and Lemma 3.3, we have
Proposition .4. Let A P+ and fix j e Z>_o. For each fl @(A) and

w eW(J) such that g(w)+ht(fl)=j, we put /’=w(A+p--fl)-p. Then,
L(I) occurs as m-irreducible components of H(u-, L(A)).

Summarizing Propositions 3.1, 3.3, and 3.4, we obtain our main the-
orem.
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Theorem 3.1. Let (A) be the GKM algebra associated to a symme-
trizable GGCM A=(a),e satisfying ((1). And let L(A) be the irreducible
highest weight (A)-module with highest weight A e P/. We assume that
the subset J of I is contained in Ie. Then, for ]_0,

H ( +, L(A))-H( -, L(A)) (R)() wew() L(w(A+ p-- fl)- p)
g(w) =j-ht ()

as m-modules. Here, L(l) (p e P3) is the irredueible highest weight -module with highest weight/.
Remark 3.3. When A is a GCM (i.e., a**=2 for all i), (R)(A) consists

of only one element 0 e *. Hence, in this ease, the above theorem is
nothing but the well-known Kostant’s Theorem for Kae-Moody algebras
(see [2] and [5]).
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