12. Kostant's Theorem for a Certain Class of Generalized Kac-Moody Algebras

By Satoshi NAITO

Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1992)

Introduction. Let $A = (a_{ij})_{i,j \in I}$ be a real $n \times n$ matrix satisfying the following conditions:

(C1) either $a_{ii}=2$ or $a_{ii}\leq 0$;

- (C2) $a_{ij} \leq 0$ if $i \neq j$, and $a_{ij} \in \mathbb{Z}$ if $a_{ii} = 2$;
- (C3) $a_{ij}=0$ implies $a_{ji}=0$.

Such a matrix is called a generalized GCM (=GGCM). And let g(A) be the generalized Kac-Moody algebra (=GKM algebra), over the complex number field C, associated to the above GGCM A. Then, we have the root space decomposition: $g(A) = \mathfrak{h} \oplus \sum_{a \in A}^{\oplus} \mathfrak{g}_{a}$, where \mathfrak{h} is the Cartan subalgebra, and Δ the root system of $(\mathfrak{g}(A), \mathfrak{h})$. Let J be a subset of $I^{re} :=$ $\{i \in I \mid a_{ii} = 2\}$. And put $\mathfrak{n}_{J}^{\pm} := \sum_{a \in d_{J}}^{\oplus} \mathfrak{g}_{\pm a}, \mathfrak{u}^{\pm} := \sum_{a \in d^{+}(J)}^{\oplus} \mathfrak{g}_{\pm a}, \mathfrak{m} := \mathfrak{n}_{J}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{J}^{+},$ where $\Delta_{J}^{\pm} := \Delta \cap \sum_{i \in J} \mathbb{Z}_{\geq 0} \alpha_{i}, \Delta^{+}(J) := \Delta^{+} \setminus \Delta_{J}^{\pm}$. In this paper, we study the homology $H_{j}(\mathfrak{u}^{-}, L(\Lambda))$ of \mathfrak{u}^{-} and the cohomology $H^{j}(\mathfrak{u}^{+}, L(\Lambda))$ of \mathfrak{u}^{+} with coefficients in the irreducible highest weight $\mathfrak{g}(A)$ -module $L(\Lambda)$ with highest weight $\Lambda \in \mathfrak{h}^{*}$. And we prove "Kostant's homology and cohomology theorem" for symmetrizable GKM algebras associated to GGCMs satisfying the following condition ($\hat{C}1$) instead of (C1) above :

(C1) either $a_{ii}=2$ or $a_{ii}=0$.

This result is a generalization of Kostant's Theorem for Kac-Moody algebras, which was proved by J. Lepowsky and H. Garland ([2] and [5]), or the classical result of B. Kostant himself [4] for finite dimensional complex semi-simple Lie algebras.

§ 1. Preliminaries for GKM algebras. We prepare some basic results for GKM algebras which will be needed later. For details, see [1] and [3]. Let $\mathfrak{g}(A)$ be the GKM algebra associated to a GGCM A, with the Cartan subalgebra \mathfrak{h} , simple roots $\Pi = \{\alpha_i\}_{i \in I}$, and simple co-roots $\Pi^{\vee} = \{\alpha_i^{\vee}\}_{i \in I}$. From now on, we always assume that the GGCM $A = (a_{ij})_{i,j \in I}$ is symmetrizable, and that J is a subset of $I^{re} = \{i \in I \mid a_{ii} = 2\}$. We call an \mathfrak{h} -module V \mathfrak{h} -diagonalizable if V admits a weight space decomposition: $V = \sum_{i \in \mathcal{G}(V)}^{\oplus} V_i$, where $\mathcal{P}(V)$ is the set of all weights of V.

Definition ([6]). \mathcal{O}_J is the category of all m-modules whose objects V satisfy the following:

- (1) V is \mathfrak{h} -diagonalizable;
- (2) the weight space V_{μ} is finite dimensional for all $\mu \in \mathcal{P}(V)$;
- (3) there exist a finite number of elements λ_i $(1 \le i \le s)$ in $\mathfrak{h}^* :=$

Hom_c(\mathfrak{h} , C) such that $\mathcal{P}(V) \subset \bigcup_{i=1}^{s} D(\lambda_i)$, where $D(\lambda_i) := \{\lambda_i - \beta \mid \beta \in Q_+ = \sum_{j \in I} Z_{\geq 0} \alpha_j\}$ ($1 \leq i \leq s$).

(4) Viewed as an m-module, V is a direct sum of irreducible highest weight m-modules $L_{\mathfrak{m}}(\lambda)$ with highest weight $\lambda \in P_J^+ := \{\mu \in \mathfrak{h}^* \mid \langle \mu, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0} \ (i \in J)\}.$

Note that the category \mathcal{O}_J is closed under the operations of taking submodules, quotients, and finite direct sums. Moreover, a tensor product of a finite number of modules from \mathcal{O}_J is again in the category \mathcal{O}_J , due to [3, Theorem 10.7 b)].

The following proposition plays a fundamental role in this paper.

Proposition I ([6]). Let $\Lambda \in P^+ := \{\lambda \in \mathfrak{h}^* \mid \langle \lambda, \alpha_i^{\vee} \rangle \geq 0 \ (i \in I), and \langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0} \ if \ a_{ii} = 2\}$. Then, $L(\Lambda)$ and $(\wedge^{j}\mathfrak{u}^-) \otimes_{\mathbb{C}} L(\Lambda)$ $(j \geq 0)$ are in the category \mathcal{O}_J , where $\wedge^{j}\mathfrak{u}^-$ is the exterior algebra of degree j over $\mathfrak{u}^ (j \geq 0)$, and is an m-module by the adjoint action since $[\mathfrak{m}, \mathfrak{u}^-] \subset \mathfrak{u}^-$.

Now, we introduce the algebra \mathcal{E}_J of "formal m-characters" of mmodules from the category \mathcal{O}_J . The elements of \mathcal{E}_J are series of the form $\sum_{\lambda \in P_J^+} c_\lambda e_m(\lambda)$, where $c_\lambda \in C$ and $c_\lambda = 0$ for λ outside a finite union of the sets of the form $D(\mu)$ ($\mu \in \mathfrak{h}^*$). Here, the elements $e_m(\lambda)$ are called *formal* m*exponentials*. They are linearly independent and are in one-one correspondence with the elements $\lambda \in P_J^+$.

For a module V in the category \mathcal{O}_J , we define the *formal* m-character $\operatorname{ch}_{\mathfrak{m}} V$ of V by $\operatorname{ch}_{\mathfrak{m}} V := \sum_{\lambda \in P_J^+} [V : L_{\mathfrak{m}}(\lambda)] e_{\mathfrak{m}}(\lambda)$, where $[V : L_{\mathfrak{m}}(\lambda)]$ is the "multiplicity" of $L_{\mathfrak{m}}(\lambda)$ in V (see [3, Ch. 9, Lemma 9.6]). Note that, for a module V in the category \mathcal{O}_J , $[V : L_{\mathfrak{m}}(\lambda)]$ ($\lambda \in P_J^+$) is finite and so $\operatorname{ch}_{\mathfrak{m}} V$ is an element of the algebra \mathcal{E}_J . Then, the multiplication of \mathcal{E}_J is defined by $e_{\mathfrak{m}}(\lambda) \cdot e_{\mathfrak{m}}(\mu) := \operatorname{ch}_{\mathfrak{m}}(L_{\mathfrak{m}}(\lambda) \otimes_{\mathcal{C}} L_{\mathfrak{m}}(\mu))$ ($\lambda, \mu \in P_J^+$). Thus, \mathcal{E}_J becomes a commutative associative algebra over C.

Especially when $J=\phi$, the algebra \mathcal{E}_J is nothing but the algebra \mathcal{E} in [3, Ch. 9], since in this case $\mathfrak{m}=\mathfrak{h}$, $P_J^+=\mathfrak{h}^*$, and $e_{\mathfrak{m}}(\lambda)=e(\lambda)$ ($\lambda \in P_J^+=\mathfrak{h}^*$). Now, let $(\cdot | \cdot)$ be a fixed standard bilinear form on \mathfrak{h}^* , $\Pi^{i\mathfrak{m}}$ (resp. Π^{re}) be the subset $\{\alpha_i \in \Pi | a_{ii} \leq 0 \text{ (resp. } a_{ii}=2)\}$ of Π , and $W \subset GL(\mathfrak{h}^*)$ be the Weyl group generated by the fundamental reflections r_i defined by $\alpha_i \in \Pi^{re}$. And let \mathfrak{S} be the set of all sums of distinct pairwise perpendicular elements, with respect to $(\cdot | \cdot)$, from $\Pi^{i\mathfrak{m}}$. Note that $\{0\} \cup \Pi^{i\mathfrak{m}}$ is contained in \mathfrak{S} . Then, we know the following character formula.

Theorem I ([1] and [3]). Let $\Lambda \in P^+$ and $\mathfrak{S}(\Lambda) := \{\lambda \in \mathfrak{S} \mid (\lambda \mid \Lambda) = 0\}$. And we put

$$\begin{split} S_{A} &:= e(A + \rho) \cdot \sum_{\beta \in \mathfrak{S}(A)} \varepsilon(\beta) e(-\beta), \qquad R := \prod_{\alpha \in \mathcal{A}_{+}} (1 - e(-\alpha))^{\operatorname{mult}(\alpha)}, \\ where \ \varepsilon(\beta) &= (-1)^{m} \ if \ \beta \in \mathfrak{S} \ is \ a \ sum \ of \ m \ elements \ from \ \Pi^{im}, \ \rho \in \mathfrak{h}^{*} \ is \ a \\ fixed \ element \ such \ that \ \langle \rho, \alpha_{i}^{\vee} \rangle &= (1/2) \cdot a_{ii} \ (i \in I), \ and \ \operatorname{mult}(\alpha) := \dim_{\mathcal{C}} \mathfrak{g}_{\alpha} \\ (\alpha \in \mathcal{A}^{+}). \quad Then, \ there \ holds \ in \ the \ algebra \ \mathcal{E} = \mathcal{E}_{\phi}, \end{split}$$

 $e(\rho) \cdot R \cdot \operatorname{ch} L(\Lambda) = \sum_{w \in W} (\det w) w(S_{\Lambda}),$

with $w(e(\mu)) := e(w(\mu)) \ (\mu \in \mathfrak{h}^*).$

Corollary I ([1] and [3]). We put $S := e(\rho) \cdot \sum_{\beta \in \mathfrak{S}} \varepsilon(\beta) e(-\beta)$. Then,

$$e(\rho) \cdot R = \sum_{w \in W} (\det w) w(S).$$

Remark 1.1. The above statement of Theorem I (resp. Corollary I) is the corrected version of Theorem 11.13.3 (resp. Corollary 11.13.2) in [3].

§ 2. Homology and cohomology of GKM algebras. In this section, we will review the notion of homology and cohomology of Lie algebras. Let $L(\Lambda)$ be the irreducible highest weight $g(\Lambda)$ -module with highest weight $\Lambda \in P^+$. Then, the vector space $C^j(\mathfrak{u}^+, L(\Lambda))$ of j cochains is defined by $C^j(\mathfrak{u}^+, L(\Lambda)) := \operatorname{Hom}^c_C(\bigwedge^j \mathfrak{u}^+, L(\Lambda))$, and is an m-module in a usual sense $(j \ge 0)$. Here, for \mathfrak{h} -diagonalizable modules $V = \sum_{\lambda \in \mathfrak{h}^*}^{\oplus} V_{\lambda}$ and $W = \sum_{\mu \in \mathfrak{h}^*}^{\oplus} W_{\mu}$ with finite dimensional weight spaces, we put

 $\operatorname{Hom}_{\mathcal{C}}^{c}(V,W) := \{ f \in \operatorname{Hom}_{\mathcal{C}}(V,W) \mid f(V_{\lambda}) = 0 \text{ for all but finitely} \\ \text{many weights } \lambda \in \mathfrak{h}^{*} \text{ of } V \}.$

The coboundary operator $d^{j}: C^{j}(\mathfrak{u}^{+}, L(\Lambda)) \rightarrow C^{j+1}(\mathfrak{u}^{+}, L(\Lambda))$ is defined by

$$(d^{j}f)(x_{1}\wedge\cdots\wedge x_{j}\wedge x_{j+1}) := \sum_{i=1}^{j+1} (-1)^{i} x_{i}(f(x_{1}\wedge\cdots\wedge \hat{x}_{i}\wedge\cdots\wedge x_{j+1}))$$

 $+\sum_{1\leq r< t\leq j+1}(-1)^{r+t}f([x_r,x_t]\wedge x_1\wedge\cdots\wedge \hat{x}_r\wedge\cdots\wedge \hat{x}_t\wedge\cdots\wedge x_{j+1}),$

where $x_1, \dots, x_{j+1} \in \mathfrak{u}^+$, $f \in C^j(\mathfrak{u}^+, L(\Lambda))$, and the symbol \hat{x}_i indicates a term to be omitted. The cohomology of this complex $\{C^j(\mathfrak{u}^+, L(\Lambda)), d^j\}_{j \in \mathbb{Z}}$ is called the j^{in} cohomology of \mathfrak{u}^+ with coefficients in $L(\Lambda)$, and is denoted by $H^j(\mathfrak{u}^+, L(\Lambda))$. Then, $H^j(\mathfrak{u}^+, L(\Lambda))$ is also an \mathfrak{m} -module, since the coboundary operator d^j commutes with the action of \mathfrak{m} .

For the homology, we define the vector space $C_j(\mathfrak{u}^-, L(\Lambda))$ of j chains to be $\wedge^j\mathfrak{u}^-\otimes_{\mathcal{C}} L(\Lambda)$, which is an m-module in a usual sense $(j \ge 0)$. The boundary operator $d_j: C_j(\mathfrak{u}^-, L(\Lambda)) \rightarrow C_{j-1}(\mathfrak{u}^-, L(\Lambda))$ is defined by

 $d_j(y_1 \wedge \cdots \wedge y_j \otimes v) := \sum_{i=1}^j (-1)^i (y_1 \wedge \cdots \wedge \hat{y}_i \wedge \cdots \wedge y_j) \otimes y_i(v)$

 $+\sum_{1\leq r< t\leq j}(-1)^{r+t}([y_r, y_t]\wedge y_1\wedge \cdots \wedge \hat{y_r}\wedge \cdots \wedge \hat{y_t}\wedge \cdots \wedge y_j)\otimes v,$ where $y_1, \cdots, y_j \in \mathfrak{u}^-$, $v \in L(A)$. And we have the similar situation as in the case of cohomology.

Remark 2.1. In this paper, the cohomology $H^{j}(\mathfrak{u}^{+}, L(\Lambda))$ of \mathfrak{u}^{+} is different from the usual one, since we have used $\operatorname{Hom}_{\mathcal{C}}^{c}(\wedge^{j}\mathfrak{u}^{+}, L(\Lambda))$ instead of $\operatorname{Hom}_{\mathcal{C}}(\wedge^{j}\mathfrak{u}^{+}, L(\Lambda))$ as $C^{j}(\mathfrak{u}^{+}, L(\Lambda))$ $(j \geq 0)$.

§ 3. Kostant's Theorem for GKM algebras. Let g(A) be the GKM algebra associated to a symmetrizable GGCM $A = (a_{ij})_{i,j\in I}$. For a subset J of I^{re} , we put $A_J := (a_{ij})_{i,j\in J}$, which is a generalized Cartan matrix (=GCM). Then, since the triple $(\mathfrak{h}, \{\alpha_i\}_{i\in J}, \{\alpha_i^{\vee}\}_{i\in J})$ is a *realization* (but not a minimal one) of the GCM A_J , the subalgebra m of g(A) can be regarded as a Kac-Moody algebra associated to the GCM A_J , whose Cartan subalgebra is \mathfrak{h} . So, the well-known representation theory for Kac-Moody algebras is also applicable to the subalgebra m of g(A) (cf. [3, Chs. 9 and 10]).

3.1. Results of L. Liu. Here, we rewrite, in the case of GKM algebras, some of Liu's results on m-modules $H_j(u^-, L(\Lambda))$ and $H^j(u^+, L(\Lambda))$ for Kac-Moody algebras. The proofs of these results for GKM algebras need no modifications. For details, see [6] and also the appendix of [2].

Proposition 3.1 ([6]). $H^{j}(\mathfrak{u}^{+}, L(\Lambda))$ is isomorphic to $H_{j}(\mathfrak{u}^{-}, L(\Lambda))$ as \mathfrak{m} -modules for any $\Lambda \in P^{+}$ and $j \in \mathbb{Z}_{\geq 0}$.

S. NAITO

Due to this, it is enough for us to consider $H_j(\mathfrak{u}^-, L(\Lambda))$ $(j \ge 0)$ only. And, since $L(\Lambda)$ and $(\wedge^{j}\mathfrak{u}^-) \otimes_c L(\Lambda)$ are in the category \mathcal{O}_J by Proposition I, $H_j(\mathfrak{u}^-, L(\Lambda))$ is also in \mathcal{O}_J , and is a direct sum of $L_\mathfrak{m}(\mu)$, $\mu \in P_J^+$, as mmodules $(j \ge 0)$. Furthermore, we have

Proposition 3.2 ([6]). Let $(\cdot | \cdot)$ be a standard bilinear form on \mathfrak{h}^* . Then, for any $\Lambda \in P^+$ and $j \in \mathbb{Z}_{\geq 0}$, every m-irreducible component of $H_j(\mathfrak{u}^-, L(\Lambda))$ is of the form $L_\mathfrak{m}(\mu)$, $\mu \in P_J^+$, with $(\mu + \rho | \mu + \rho) = (\Lambda + \rho | \Lambda + \rho)$.

3.2. Main theorem. From now on, we assume that the symmetrizable GGCM $A = (a_{ij})_{i,j \in I}$ satisfies the following condition ($\hat{C}1$):

(Ĉ1) either $a_{ii} = 2$ or $a_{ii} = 0$ $(i \in I)$.

Then, from Theorem I and Corollary I, we get the following.

Lemma 3.1. $e(\rho) \cdot ch(\Lambda \mathfrak{n}^-) = ch(\sum_{\beta \in \mathfrak{S}}^{\oplus} L(\rho - \beta)), with \mathfrak{n}^- := \sum_{\alpha \in J^+}^{\oplus} \mathfrak{g}_{-\alpha}$. Remark 3.1. By the condition (C1), $\rho - \beta \in P^+$ for all $\beta \in \mathfrak{S}$.

From the above lemma, it follows that, for every $\Lambda \in \mathfrak{h}^*$,

 $e(\rho) \cdot \operatorname{ch} ((\bigwedge \mathfrak{n}^{-}) \otimes_{\mathcal{C}} L(\Lambda)) = \operatorname{ch} ((\sum_{\beta \in \mathfrak{S}}^{\oplus} L(\rho - \beta)) \otimes_{\mathcal{C}} L(\Lambda)).$

Therefore, μ is a weight of $(\wedge \mathfrak{n}^-) \otimes_c L(\Lambda)$ if and only if $\mu + \rho$ is a weight of $(\sum_{\substack{\beta \in \mathfrak{S} \\ \beta \in \mathfrak{S}}} L(\rho - \beta)) \otimes_c L(\Lambda)$, and moreover, they have the same multiplicity. Using this fact, we can show

Lemma 3.2. Let $\Lambda \in P^+$. Assume that μ is a weight of $(\wedge^{j}\mathfrak{u}^-)\otimes_c L(\Lambda)$ for some $j \ge 0$, and satisfies $(\mu + \rho | \mu + \rho) = (\Lambda + \rho | \Lambda + \rho)$. Then,

(a) there exist a $\beta \in \mathfrak{S}(\Lambda)$ and a $w \in W(J) := \{w \in W | w(\Delta^{-}) \cap \Delta^{+} \subset \Delta^{+}(J)\},\$ such that $\ell(w) + ht(\beta) = j$ and $\mu = w(\Lambda + \rho - \beta) - \rho$;

(b) the multiplicity of μ in $(\wedge^{j}\mathfrak{u}^{-})\otimes_{c} L(\Lambda)$ is equal to one.

Here, $\ell(w)$ is the length of $w \in W$, and $ht(\beta) = m$ if $\beta \in \mathfrak{S}$ is a sum of m distinct elements from Π^{im} .

By Proposition 3.2 and Lemma 3.2, we have the following.

Proposition 3.3. Let $\Lambda \in P^+$ and $j \in \mathbb{Z}_{\geq 0}$. If $L_{\mathfrak{m}}(\mu)$ $(\mu \in P_J^+)$ is an \mathfrak{m} -irreducible component of $H_j(\mathfrak{u}^-, L(\Lambda))$, then

(a) $\mu = w(\Lambda + \rho - \beta) - \rho$, for some $\beta \in \mathfrak{S}(\Lambda)$ and some $w \in W(J)$, such that $\ell(w) + ht(\beta) = j$;

(b) $L_{\mathfrak{m}}(\mu)$ occurs with multiplicity one as \mathfrak{m} -irreducible components of $H_{\mathfrak{g}}(\mathfrak{n}^-, L(\Lambda))$.

Now, from Theorem I and the Euler-Poincaré principle (cf. [2]), we get the following.

Lemma 3.3. For $\Lambda \in P^+$, there holds in the algebra \mathcal{E}_J ,

 $\sum_{j\geq 0} (-1)^j \operatorname{ch}_{\mathfrak{m}} (H_j(\mathfrak{u}^-, L(\Lambda))) = \sum_{\beta \in \mathfrak{S}(\Lambda)} \varepsilon(\beta) \sum_{w \in W(J)} (\det w) e_{\mathfrak{m}}(w(\Lambda + \rho - \beta) - \rho).$ Remark 3.2. For $w \in W(J)$ and $\beta \in \mathfrak{S}$, $w(\Lambda + \rho - \beta) - \rho \in P_J^+$. By Proposition 3.3 and Lemma 3.3, we have

Proposition 3.4. Let $\Lambda \in P^+$ and fix $j \in \mathbb{Z}_{\geq 0}$. For each $\beta \in \mathfrak{S}(\Lambda)$ and $w \in W(J)$ such that $\ell(w) + ht(\beta) = j$, we put $\mu := w(\Lambda + \rho - \beta) - \rho$. Then, $L_m(\mu)$ occurs as m-irreducible components of $H_j(\mathfrak{u}^-, L(\Lambda))$.

Summarizing Propositions 3.1, 3.3, and 3.4, we obtain our main theorem. No. 2]

Theorem 3.1. Let g(A) be the GKM algebra associated to a symmetrizable GGCM $A = (a_{ij})_{i,j \in I}$ satisfying (Ĉ1). And let L(A) be the irreducible highest weight g(A)-module with highest weight $A \in P^+$. We assume that the subset J of I is contained in I^{re} . Then, for $j \ge 0$,

 $H^{j}(\mathfrak{u}^{+}, L(\Lambda)) \cong H_{j}(\mathfrak{u}^{-}, L(\Lambda)) \cong \sum_{\beta \in \mathfrak{S}(\Lambda)}^{\oplus} \sum_{\substack{w \in W(J) \\ \ell(w) = j-ht(\beta)}}^{\oplus} L_{\mathfrak{m}}(w(\Lambda + \rho - \beta) - \rho)$

as m-modules. Here, $L_{\mathfrak{m}}(\mu)$ ($\mu \in P_J^+$) is the irreducible highest weight m-module with highest weight μ .

Remark 3.3. When A is a GCM (i.e., $a_{ii}=2$ for all i), $\mathfrak{S}(A)$ consists of only one element $0 \in \mathfrak{h}^*$. Hence, in this case, the above theorem is nothing but the well-known Kostant's Theorem for Kac-Moody algebras (see [2] and [5]).

References

- [1] R. Borcherds: Generalized Kac-Moody algebras. J. Algebra, 115, 501-512 (1988).
- [2] H. Garland and J. Lepowsky: Lie algebra homology and the Macdonald-Kac formulas. Invent. math., 34, 37-76 (1976).
- [3] V. G. Kac: Infinite Dimensional Lie Algebras. 3rd ed., Cambridge University Press, Cambridge (1990).
- [4] B. Kostant: Lie algebra cohomology and generalized Borel-Weil theorem. Annals of Math., 74, 329-387 (1961).
- [5] J. Lepowsky: Generalized Verma modules, loop space cohomology and Macdonaldtype identities. Ann. scient. Éc. Norm. Sup., 12, 169-234 (1979).
- [6] L. Liu: Kostant's formula for Kac-Moody Lie algebras. Yale University dissertation (1990).