11. A Remark on the Class-Number of the Maximal Real Subfield of a Cyclotomic Field. II

By Hiroyuki OSADA

Department of Mathematics, National Defence Academy

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1992)

For any number field K of finite degree, we denote by h(K) the class number of K. ζ_q denotes a primitive q-th root of 1. In this article, we show the following.

Theorem. Let p and q=4p+1 be both primes. Suppose p+1 is not a power of 2, and 2p+1 is not a power of 3. Then

 $h^{+}(q) \leq q \Rightarrow h^{+}(q) = h(\mathbf{Q}(\sqrt{q})),$

where, $h^+(q)$ denotes $h(Q(\zeta_q + \zeta_q^{-1}))$, namely the class number of the maximal real subfield of $Q(\zeta_q)$.

To show the above theorem, we prepare some propositions.

Proposition 1. Let p be a prime. Suppose L/k is a Galois p-extention. Assume there is at most one prime which ramifies in L/k. If $p \mid h(L)$, then $p \mid h(k)$ (see [2]).

Proposition 2. Let p and q be distinct primes. Let F be a finite algebraic field. Suppose E/F is a Galois q-extension and f is the order of $p \mod q$. Then, for any α with $0 \leq \alpha < f$,

$p^{\alpha} \| h(E) \Rightarrow p^{\alpha} \| h(F).$

Proof. Let P(E) be the maximal abelian unramified p-extention of E. Since $p^{\alpha} || h(E)$, $[P(E): E] = p^{\alpha}$. Since E/F is Galois, (P(E)/F) is Galois because of the uniqueness of P(E). Suppose G = Gal(P(E)/F). We can write the order of G as $p^{\alpha}q^{\beta}$ for some non-negative integer β .

To go further, we need the following:

Lemma. Let p, q be distinct primes. Let G be a finite group of order $p^{\alpha}q^{\beta}$. Let f be the order of $p \mod q$. Let H be a q-Sylow subgroup of G and $\alpha < f$. Then H is a normal subgroup of G.

Proof of lemma. Let S be the number of q-Sylow subgroups of G. Then s=mq+1 for some non-negative integer m and s divides $p^{\alpha}q^{\beta}$. We can write $s=mq+1=p^{t}$ for $0 \leq t \leq \alpha$. Especially, $p^{t} \equiv 1 \mod q$. Since f is the order of $p \mod q$, t=0 holds. Therefore, s=1.

By the above lemma, the q-Sylow subgroup H of G is a normal subgroup of G. Let M be the subfield of P(E) which corresponds to H. Then M/F is a Galois extention and $G(M/F) \cong G(P(E)/E)$. Therefore, M/F is an abelian unramified extention of degree p^{α} . Therefore we have $p^{\alpha} | h(F)$. If $p^{\alpha+1} | h(F)$, then $p^{\alpha+1} | h(E)$. We conclude Proposition 2 holds.

Corollary. Let p, q, E, F and f be as in Proposition 2. Then $p \nmid h(F), \quad p \mid h(E) \Rightarrow p^{f} \mid h(E),$ and

$$p^{\alpha} \| h(F) \Rightarrow p^{\alpha} \| h(E) \quad or \quad p^{j} \| h(E).$$

Proof of the theorem. Put $K = Q(\zeta_q + \zeta_q^{-1})$ and $k = Q(\sqrt{q})$. By the assumption on q and p, K/k is a p-extention.

Since $h(k) < \sqrt{q} = \sqrt{4p+1}$ (see [3]), we have h(k) < p. Therefore, $p \nmid h(k)$. By Proposition 1, $p \nmid h(K)$. Now let r be any prime $\neq p$. We shall show that $r \nmid h(k) \Rightarrow r \nmid h(K)$. In fact, $r \nmid h(k)$ and $r \mid h(K)$ would imply $r^{j} \mid h(K)$ by Corollary of Proposition 2, where f is the order of $r \pmod{p}$. Thus $r^{j} \le h(K) < q$, which is in contradiction to our assumptions on p, q shown as follows.

In fact, $r^{f} \equiv 1 \pmod{p}$ implies $r^{f} - 1 = mp$ for some $m \ge 1$, and $m \ge 4$ means $r^{f} \ge 4p + 1 = q$ in contradiction to $r^{f} < q$.

In case $r \ge 5$, $r^{r}-1=(r-1)(r^{r-1}+\cdots+1)$ can not be =2p because r-1 is an even number ≥ 4 , and $r^{r-1}+\cdots+1\ge 2$. Thus $r^{r}-1\ge 4p$, i.e. $m\ge 4$.

In case r=2, 3, our assumptions on p+1 and 2p+1 enable us also to show $m \ge 4$.

First let r=2. We have $2^{t} \equiv 1 \pmod{3}$. It follows f=2l for some l. Since $2^{t}-1=(2^{t}-1)(2^{t}+1)=3p$, we should have l=2. But 4p+1=21 is not a prime, so m=3 is impossible. The case r=3 is clear.

In view of the well-known fact h(k) | h(K) (see [4]), we see thus that the conclusion of our Theorem holds.

Examples. Suppose q = 1229 or 4493. Suppose $h^+(q) < q$. Then $h^+(q) = 3$.

Remark 1. Suppose p, q=4p+1 are prime. Then we have only 5 examples $\{3, 7, 13, 127, 1093\}$ for $p<10^{8}$, which satisfy the condition that $p+1=2^{f}$ or $2p+1=3^{f}$.

Remark 2. Let q be a prime. We know no example for $h^+(q) > 1$ such that $h^+(q)$ is completely determined. We have only one example h^+ (163)=4 (see [1]) under the generalized Rimannian hypothesis by van der Linden.

References

- F. van der. Linden: Class numbers computations of real abelian number fields. Math Comp., 39, 693-707 (1982).
- [2] J. Masley: Class numbers of real cyclic number fields with small conductors. Compositio Math., 37, 297-319 (1978).
- [3] W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers. Polish Scientific Publishers (1973).
- [4] L. C. Washington: Introduction to Cyclotomic Fields. Springer (1982).