10. The Aitken-Steffensen Formula for Systems of Nonlinear Equations. V

By Tatsuo Noda
Faculty of Engineering, Toyama Prefectural University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1992)

1. Introduction. Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a vector in R^{n} and D a region contained in R^{n}. Let $f_{i}(x)(1 \leqq i \leqq n)$ be real-valued nonlinear functions defined on D and $f(x)=\left(f_{1}(x), f_{2}(x), \cdots, f_{n}(x)\right)$ an n-dimensional vector-valued function. Then we shall consider a system of nonlinear equations

$$
\begin{equation*}
x=f(x), \tag{1.1}
\end{equation*}
$$

whose solution is \bar{x}.
As mentioned in [2]-[4], Henrici [1, p. 116] has considered a formula, which is called the Aitken-Steffensen formula. Now, we have studied the above Aitken-Steffensen formula for systems of nonlinear equations in [2]-[4], and shown [2, Theorem 2], [3, Theorem 2] and [4, Theorem 1].

The purpose of this paper is to show Theorem 4 by combining [2, Theorem 2] with [2, Theorem 1], and Theorem 5 by using only the relation in [4, Theorem 1].
2. Statement of results. For any $x \in R^{n}$ and an $n \times n$ matrix $A=$ ($a_{i j}$), we shall use the norms $\|x\|$ and $\|A\|$ defined by

$$
\|x\|=\max _{1 \leqq i \leqq n}\left|x_{i}\right| \quad \text { and } \quad\|A\|=\max _{1 \leqq i \leqq n} \sum_{j=1}^{n}\left|\alpha_{i j}\right|
$$

respectively. Let $U(\bar{x})=\{x ;\|x-\bar{x}\|<\delta\} \subset D$ be a neighbourhood.
Given $x^{(0)} \in R^{n}$, define $x^{(i)} \in R^{n}(i=1,2, \cdots)$ by

$$
\begin{equation*}
x^{(i+1)}=f\left(x^{(i)}\right) \quad(i=0,1,2, \cdots) . \tag{2.1}
\end{equation*}
$$

Put

$$
\begin{equation*}
d^{(i)}=x^{(i)}-\bar{x} \quad \text { for } i=0,1,2, \cdots, \tag{2.2}
\end{equation*}
$$

and then define an $n \times n$ matrix D_{k} by

$$
D_{k}=\left(d^{(k)}, d^{(k+1)}, \cdots, d^{(k+n-1)}\right)
$$

Throughout this paper, we shall assume the same conditions (A.1)(A.5) as in [2].
(A.1) $\quad f_{i}(x)(1 \leqq i \leqq n)$ are two times continuously differentiable on D.
(A.2) There exists a point $\bar{x} \in D$ satisfying (1.1).
(A.3) $\|J(\bar{x})\|<1$, where $J(x)=\left(\partial f_{i}(x) / \partial x_{j}\right)(1 \leqq i, j \leqq n)$.
(A.4) The vectors $d^{(k)}, d^{(k+1)}, \cdots, d^{(k+n-1)}, k=0,1,2, \cdots$, are linearly independent.
(A.5) $\quad \inf \left\{\left|\operatorname{det} D_{k}\right| /\left\|d^{(k)}\right\|^{n}\right\}>0$.

Then, we shall consider the Aitken-Steffensen formula

$$
\begin{equation*}
y^{(k)}=x^{(k)}-\Delta X^{(k)}\left(\Delta^{2} X^{(k)}\right)^{-1} \Delta x^{(k)} \quad(k=0,1,2, \cdots), \tag{2.3}
\end{equation*}
$$

where an n-dimensional vector $\Delta x^{(k)}$, and $n \times n$ matrices $\Delta X^{(k)}$ and $\Delta^{2} X^{(k)}$ are given by

$$
\begin{gather*}
\Delta x^{(k)}=x^{(k+1)}-x^{(k)}, \tag{2.4}\\
\Delta X^{(k)}=\left(x^{(k+1)}-x^{(k)}, \cdots, x^{(k+n)}-x^{(k+n-1)}\right)
\end{gather*}
$$

$$
\begin{equation*}
\Delta^{2} X^{(k)}=\Delta X^{(k+1)}-\Delta X^{(k)} . \tag{2.6}
\end{equation*}
$$

Now, we have shown the following Theorems 1 and 2 in [2], and Theorem 3 in [4].

Theorem 1 ([2, Theorem 1]). Under conditions (A.1)-(A.3), we have

$$
\begin{equation*}
\left\|x^{(k+1)}-\bar{x}\right\| \leqq M_{1}\left\|x^{(k)}-\bar{x}\right\| \quad(k=0,1,2, \cdots) \tag{2.7}
\end{equation*}
$$

for any $x^{(0)} \in U(\bar{x})$ and a constant M_{1} with $\|J(\bar{x})\|<M_{1}<1$.
Theorem 2 ([2, Theorem 2]). Under conditions (A.1)-(A.5), for $x^{(k)} \in$ $U(\bar{x})$, there exists a constant M_{2} such that the property

$$
\begin{equation*}
\left\|y^{(k)}-\bar{x}\right\| \leqq M_{2}\left\|x^{(k)}-\bar{x}\right\|^{2} \tag{2.8}
\end{equation*}
$$

holds for sufficiently large k.
Theorem 3 ([4, Theorem 1]). Under conditions (A.1)-(A.5), for $x^{(k)} \in$ $U(\bar{x})$, a new relation of the form

$$
\begin{equation*}
\left\|y^{(k+1)}-\bar{x}\right\| \leqq M\left\|y^{(k)}-\bar{x}\right\|+\varepsilon_{k}, \quad \varepsilon_{k} \rightarrow 0(k \rightarrow \infty) \tag{2.9}
\end{equation*}
$$

holds with a constant M satisfying $\|J(\bar{x})\|<M<1$, where ε_{k} can be considered as "convergent term".

In this paper, we show the following results.
Theorem 4. Under conditions (A.1)-(A.5), for $x^{(k)} \in U(\bar{x})$, Theorem 2, together with Theorem 1, implies

$$
y^{(k)} \rightarrow \bar{x} \quad \text { as } \quad k \rightarrow \infty .
$$

Theorem 5. Under conditions (A.1)-(A.5), for $x^{(k)} \in U(\bar{x})$, Theorem 3 implies

$$
y^{(k)} \rightarrow \bar{x} \quad \text { as } \quad k \rightarrow \infty .
$$

As seen above, the result of Theorem 4 is the same as that of Theorem 5, but we show Theorem 4 by combining (2.8) in Theorem 2 with (2.7) in Theorem 1, and Theorem 5 by using only the relation (2.9) in Theorem 3.
3. Preliminaries. By (2.2) and (2.4), we have

$$
\begin{equation*}
\Delta x^{(k)}=d^{(k+1)}-d^{(k)}, \tag{3.1}
\end{equation*}
$$

and, by (2.1), (2.2) and (A.2),

$$
\begin{equation*}
d^{(k+1)}=J(\bar{x}) d^{(k)}+\xi\left(x^{(k)}\right), \tag{3.2}
\end{equation*}
$$

$\xi\left(x^{(k)}\right)$ being an n-dimensional vector, and by (A.1), (3.3) $\quad\left\|\xi\left(x^{(k)}\right)\right\| \leqq L_{1}\left\|d^{(k)}\right\|^{2} \quad$ for $x^{(k)} \in U(\bar{x})$, a constant L_{1} being suitably chosen. Then, from (3.1) by using (3.2), (3.3) and (A.3), we see that the inequality

$$
\begin{equation*}
\left\|\Delta x^{(k)}\right\| \leqq L_{2}\left\|d^{(k)}\right\| \tag{3.4}
\end{equation*}
$$

holds with a constant L_{2} chosen suitably.
For the proof of Theorem 5, we need the following lemma given in [2].

Lemma 1 ([2, Lemma 4]). Under conditions (A.1)-(A.5), for $x^{(k)} \in$
$U(\bar{x})$, the $n \times n$ matrix $\Delta^{2} X^{(k)}$ given by (2.6) is invertible, and there exists a constant L_{3} such that the inequality
(3.5) $\quad\left\|\left(\Delta^{2} X^{(k)}\right)^{-1}\right\| \leqq L_{3}\left\|d^{(k)}\right\|^{-1}$
holds for sufficiently large k.
By (3.2), we have

$$
d^{(k+i)}-d^{(k+i-1)}=(J(\bar{x})-I) d^{(k+i-1)}+\xi\left(x^{(k+i-1)}\right),
$$

so that

$$
\begin{equation*}
\Delta X^{(k)}=(J(\bar{x})-I) D_{k}+\left(\xi\left(x^{(k)}\right), \cdots, \xi\left(x^{(k+n-1)}\right)\right) \tag{3.6}
\end{equation*}
$$

follows from (2.5).
We note that [2, Theorem 1] leads to

$$
\begin{equation*}
\left\|D_{k}\right\| \leqq \sum_{i=0}^{n-1}\left\|d^{(k+i)}\right\| \leqq n\left\|d^{(k)}\right\| . \tag{3.7}
\end{equation*}
$$

Since

$$
\left\|\left(\xi\left(x^{(k)}\right), \cdots, \xi\left(x^{(k+n-1}\right)\right)\right\| \leqq \sum_{i=1}^{n}\left\|\xi\left(x^{(k+i-1)}\right)\right\|,
$$

we have, by (3.3) and [2, Theorem 1],

$$
\begin{equation*}
\left\|\left(\xi\left(x^{(k)}\right), \cdots, \xi\left(x^{(k+n-1)}\right)\right)\right\| \leqq L_{4}\left\|d^{(k)}\right\|^{2} \quad \text { for } x^{(k)} \in U(\bar{x}), \tag{3.8}
\end{equation*}
$$

a constant L_{4} being suitably chosen. Then using $\|I\|=1$, there exists a constant L_{5} such that the inequality

$$
\begin{equation*}
\left\|\Delta X^{(k)}\right\| \leqq L_{5}\left\|d^{(k)}\right\| \tag{3.9}
\end{equation*}
$$

holds for $x^{(k)} \in U(\bar{x})$, from (3.6), by (A.3), (3.7) and (3.8).
4. Proofs of Theorems 4 and 5. We shall prove Theorems 4 and 5.

Proof of Theorem 4. By repeating the process (2.7) in Theorem 1, we have

$$
\left\|x^{(k)}-\bar{x}\right\| \leqq M_{1}^{k}\left\|x^{(0)}-\bar{x}\right\|
$$

for any $x^{(0)} \in U(\bar{x})$, and so combined with (2.8) in Theorem 2, we obtain

$$
\left\|y^{(k)}-\bar{x}\right\| \leqq M_{2} M_{1}^{2 k}\left\|x^{(0)}-\bar{x}\right\|^{2} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

since $\|J(\bar{x})\|<M_{1}<1$. This proves the theorem.
Proof of Theorem 5. We recall that (3.5) in Lemma 1 holds, provided that k is sufficiently large. Now, (2.3) gives

$$
\begin{equation*}
\left\|y^{(k)}-\bar{x}\right\| \leqq\left\|d^{(k)}\right\|+\left\|\Delta X^{(k)}\right\|\left\|\left(\Delta^{2} X^{(k)}\right)^{-1}\right\|\left\|\Delta x^{(k)}\right\| . \tag{4.1}
\end{equation*}
$$

Then by (4.1) with (3.4), (3.5) and (3.9), for $x^{(k)} \in U(\bar{x})$, there exists a constant $K_{1}>0$ such that
(4.2)

$$
\left\|y^{(k)}-\bar{x}\right\| \leqq\left(1+L_{2} L_{3} L_{5}\right) \delta
$$

holds for any integer $k>K_{1}$.
Since $\varepsilon_{k} \rightarrow 0(k \rightarrow \infty)$ in (2.9), it follows that for an arbitrary but fixed $\varepsilon>0$, there exists a constant $K_{2}>0$ such that

$$
\begin{equation*}
0 \leqq \varepsilon_{k}<\varepsilon \tag{4.3}
\end{equation*}
$$

for any integer $k>K_{2}$. So putting $N=\max \left(K_{1}, K_{2}\right)$, we have (4.2) and (4.3) for $k>N$.

By repeating the process (2.9) in Theorem 3, we obtain

$$
\begin{equation*}
\left\|y^{(k+1)}-\bar{x}\right\| \leqq M^{k-N}\left\|y^{(N+1)}-\bar{x}\right\|+\sum_{i=0}^{k-N-1} M^{i} \varepsilon_{k-i} \tag{4.4}
\end{equation*}
$$

and, from (4.4), by (4.2) and (4.3),

$$
\begin{equation*}
\left\|y^{(k+1)}-\bar{x}\right\| \leqq M^{k-N}\left(1+L_{2} L_{3} L_{5}\right) \delta+\frac{\varepsilon}{1-M} \tag{4.5}
\end{equation*}
$$

for $k>N$.
As M was chosen so as to satisfy $\|J(\bar{x})\|<M<1$, we see that there exists a constant $K>N$ such that
(4.6)
$M^{k-N}<\varepsilon$
for $k>K$. Therefore, for $x^{(k)} \in U(\bar{x})$,

$$
\left\|y^{(k+1)}-\bar{x}\right\| \leqq\left[\left(1+L_{2} L_{3} L_{5}\right) \delta+\frac{1}{1-M}\right] \varepsilon
$$

follows from (4.5) by using (4.6), provided $k>K$. This proves our Theorem 5. In this way, we have proved Theorems 4 and 5, as desired.

Remark 1. We note that, for $x^{(k)} \in U(\bar{x})$,

$$
\left\|\Delta x^{(k)}\right\| \leqq\left(M_{1}+1\right)\left\|d^{(k)}\right\|
$$

holds from (3.1), by Theorem 1. So we can take $M_{1}+1$ as L_{2} in (3.4).
The author would like to express his hearty thanks to H. Mine, Professor Emeritus of Kyoto University, for many valuable suggestions.

References

[1] P. Henrici: Elements of Numerical Analysis. John Wiley, New York (1964).
[2] T. Noda: The Aitken-Steffensen formula for systems of nonlinear equations. Sûgaku, 33, 369-372 (1981) (in Japanese).
[3] --: The Aitken-Steffensen formula for systems of nonlinear equations. II. ibid., 38, 83-85 (1986) (in Japanese).
[4] --: The Aitken-Steffensen formula for systems of nonlinear equations. III. Proc. Japan Acad., 62A, 174-177 (1986).

