10. The Aitken-Steffensen Formula for Systems of Nonlinear Equations. V

By Tatsuo NODA

Faculty of Engineering, Toyama Prefectural University (Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1992)

1. Introduction. Let $x = (x_1, x_2, \dots, x_n)$ be a vector in \mathbb{R}^n and D a region contained in \mathbb{R}^n . Let $f_i(x)$ $(1 \leq i \leq n)$ be real-valued nonlinear functions defined on D and $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$ an *n*-dimensional vector-valued function. Then we shall consider a system of nonlinear equations

(1.1)

x = f(x),

whose solution is \bar{x} .

As mentioned in [2]-[4], Henrici [1, p. 116] has considered a formula, which is called the Aitken-Steffensen formula. Now, we have studied the above Aitken-Steffensen formula for systems of nonlinear equations in [2]-[4], and shown [2, Theorem 2], [3, Theorem 2] and [4, Theorem 1].

The purpose of this paper is to show Theorem 4 by combining [2, Theorem 2] with [2, Theorem 1], and Theorem 5 by using only the relation in [4, Theorem 1].

2. Statement of results. For any $x \in \mathbb{R}^n$ and an $n \times n$ matrix $A = (a_{ij})$, we shall use the norms ||x|| and ||A|| defined by

$$||x|| = \max_{1 \le i \le n} |x_i|$$
 and $||A|| = \max_{1 \le i \le n} \sum_{i=1}^n |a_{ij}|$,

respectively. Let $U(\bar{x}) = \{x ; ||x - \bar{x}|| < \delta\} \subset D$ be a neighbourhood.

Given $x^{(0)} \in \mathbb{R}^n$, define $x^{(i)} \in \mathbb{R}^n$ $(i=1,2,\cdots)$ by

(2.1) $x^{(i+1)} = f(x^{(i)}) \quad (i=0,1,2,\cdots).$

Put

(2.2) $d^{(i)} = x^{(i)} - \bar{x}$ for $i = 0, 1, 2, \cdots$,

and then define an $n \times n$ matrix D_k by

$$D_k = (d^{(k)}, d^{(k+1)}, \cdots, d^{(k+n-1)}).$$

Throughout this paper, we shall assume the same conditions (A.1)-(A.5) as in [2].

(A.1) $f_i(x)$ $(1 \le i \le n)$ are two times continuously differentiable on D.

(A.2) There exists a point $\bar{x} \in D$ satisfying (1.1).

(A.3) $||J(\bar{x})|| < 1$, where $J(x) = (\partial f_i(x) / \partial x_j)$ $(1 \le i, j \le n)$.

(A.4) The vectors $d^{(k)}$, $d^{(k+1)}$, \cdots , $d^{(k+n-1)}$, $k=0, 1, 2, \cdots$, are linearly independent.

(A.5) $\inf \{ |\det D_k| / || d^{(k)} ||^n \} > 0.$

Then, we shall consider the Aitken-Steffensen formula

(2.3) $y^{(k)} = x^{(k)} - \varDelta X^{(k)} (\varDelta^2 X^{(k)})^{-1} \varDelta x^{(k)} \quad (k = 0, 1, 2, \cdots),$

where an *n*-dimensional vector $\Delta x^{(k)}$, and $n \times n$ matrices $\Delta X^{(k)}$ and $\Delta^2 X^{(k)}$ are given by

- (2.4) $\Delta x^{(k)} = x^{(k+1)} x^{(k)},$
- (2.5) $\Delta X^{(k)} = (x^{(k+1)} x^{(k)}, \cdots, x^{(k+n)} x^{(k+n-1)})$

and

(2.6) $\Delta^2 X^{(k)} = \Delta X^{(k+1)} - \Delta X^{(k)}.$

Now, we have shown the following Theorems 1 and 2 in [2], and Theorem 3 in [4].

Theorem 1 ([2, Theorem 1]). Under conditions (A.1)–(A.3), we have (2.7) $\|x^{(k+1)} - \bar{x}\| \leq M_1 \|x^{(k)} - \bar{x}\|$ $(k=0, 1, 2, \cdots)$

for any $x^{(0)} \in U(\bar{x})$ and a constant M_1 with $||J(\bar{x})|| < M_1 < 1$.

Theorem 2 ([2, Theorem 2]). Under conditions (A.1)–(A.5), for $x^{(k)} \in U(\bar{x})$, there exists a constant M_2 such that the property

(2.8) $||y^{(k)} - \bar{x}|| \leq M_2 ||x^{(k)} - \bar{x}||^2$

holds for sufficiently large k.

Theorem 3 ([4, Theorem 1]). Under conditions (A.1)–(A.5), for $x^{(k)} \in U(\bar{x})$, a new relation of the form

(2.9) $\|y^{(k+1)} - \bar{x}\| \leq M \|y^{(k)} - \bar{x}\| + \varepsilon_k, \qquad \varepsilon_k \to 0 \ (k \to \infty)$

holds with a constant M satisfying $||J(\bar{x})|| < M < 1$, where ε_k can be considered as "convergent term".

In this paper, we show the following results.

Theorem 4. Under conditions (A.1)–(A.5), for $x^{(k)} \in U(\bar{x})$, Theorem 2, together with Theorem 1, implies

$$y^{(k)} \rightarrow \overline{x} \quad as \quad k \rightarrow \infty.$$

Theorem 5. Under conditions (A.1)–(A.5), for $x^{(k)} \in U(\bar{x})$, Theorem 3 implies

 $y^{\scriptscriptstyle (k)} \rightarrow \bar{x} \quad as \quad k \rightarrow \infty.$

As seen above, the result of Theorem 4 is the same as that of Theorem 5, but we show Theorem 4 by combining (2.8) in Theorem 2 with (2.7) in Theorem 1, and Theorem 5 by using only the relation (2.9) in Theorem 3.

3. Preliminaries. By (2.2) and (2.4), we have
(3.1)
$$\Delta x^{(k)} = d^{(k+1)} - d^{(k)}$$
,

and by
$$(21)$$
 (22) and (12)

(3.2)
$$d^{(k+1)} = J(\bar{x})d^{(k)} + \xi(x^{(k)}),$$

 $\xi(x^{(k)})$ being an *n*-dimensional vector, and by (A.1),

(3.3) $\|\xi(x^{(k)})\| \leq L_1 \|d^{(k)}\|^2$ for $x^{(k)} \in U(\bar{x})$,

a constant L_1 being suitably chosen. Then, from (3.1) by using (3.2), (3.3) and (A.3), we see that the inequality

 $\| \Delta x^{(k)} \| \leq L_2 \| d^{(k)} \|$

holds with a constant L_2 chosen suitably.

For the proof of Theorem 5, we need the following lemma given in [2].

Lemma 1 ([2, Lemma 4]). Under conditions (A.1)-(A.5), for $x^{(k)} \in$

 $\|(\varDelta^2 X^{(k)})^{-1}\| \leq L_3 \|d^{(k)}\|^{-1}$

holds for sufficiently large k.

By (3.2), we have

$$d^{(k+i)} - d^{(k+i-1)} = (J(\bar{x}) - I)d^{(k+i-1)} + \xi(x^{(k+i-1)}),$$

so that

(3.6) $\Delta X^{(k)} = (J(\bar{x}) - I)D_k + (\xi(x^{(k)}), \dots, \xi(x^{(k+n-1)}))$ follows from (2.5).

We note that [2, Theorem 1] leads to

(3.7)
$$\|D_k\| \leq \sum_{i=0}^{n-1} \|d^{(k+i)}\| \leq n \|d^{(k)}\|.$$

Since

$$\|(\xi(x^{(k)}), \cdots, \xi(x^{(k+n-1)}))\| \leq \sum_{i=1}^{n} \|\xi(x^{(k+i-1)})\|,$$

we have, by (3.3) and [2, Theorem 1],

 $(3.8) \|(\xi(x^{(k)}), \cdots, \xi(x^{(k+n-1)}))\| \leq L_4 \|d^{(k)}\|^2 for x^{(k)} \in U(\bar{x}),$

a constant L_4 being suitably chosen. Then using ||I|| = 1, there exists a constant L_5 such that the inequality

 $\| \Delta X^{(k)} \| \leq L_5 \| d^{(k)} \|$

holds for $x^{(k)} \in U(\bar{x})$, from (3.6), by (A.3), (3.7) and (3.8).

4. Proofs of Theorems 4 and 5. We shall prove Theorems 4 and 5.

Proof of Theorem 4. By repeating the process (2.7) in Theorem 1, we have

$$||x^{(k)} - \bar{x}|| \leq M_1^k ||x^{(0)} - \bar{x}||$$

for any $x^{(0)} \in U(\bar{x})$, and so combined with (2.8) in Theorem 2, we obtain $\|y^{(k)} - \bar{x}\| \le M_2 M_1^{2k} \|x^{(0)} - \bar{x}\|^2 \to 0$ as $k \to \infty$,

since $\|J(\bar{x})\| < M_1 < 1$. This proves the theorem.

Proof of Theorem 5. We recall that (3.5) in Lemma 1 holds, provided that k is sufficiently large. Now, (2.3) gives

(4.1) $\|y^{(k)} - \bar{x}\| \leq \|d^{(k)}\| + \|\Delta X^{(k)}\| \|(\Delta^2 X^{(k)})^{-1}\| \|\Delta x^{(k)}\|.$

Then by (4.1) with (3.4), (3.5) and (3.9), for $x^{(k)} \in U(\bar{x})$, there exists a constant $K_1 > 0$ such that

(4.2) $\|y^{(k)} - \bar{x}\| \leq (1 + L_2 L_3 L_5) \delta$

holds for any integer $k > K_1$.

Since $\varepsilon_k \to 0$ $(k \to \infty)$ in (2.9), it follows that for an arbitrary but fixed $\varepsilon > 0$, there exists a constant $K_2 > 0$ such that

(4.3) $0 \leq \varepsilon_k < \varepsilon$ for any integer $k > K_2$. So putting $N = \max(K_1, K_2)$, we have (4.2) and (4.3) for k > N.

By repeating the process (2.9) in Theorem 3, we obtain

(4.4)
$$\|y^{(k+1)} - \bar{x}\| \leq M^{k-N} \|y^{(N+1)} - \bar{x}\| + \sum_{i=0}^{k-N-1} M^i \varepsilon_{k-i},$$

and, from (4.4), by (4.2) and (4.3),

T. NODA

[Vol. 68(A),

(4.5)
$$\|y^{(k+1)} - \bar{x}\| \leq M^{k-N} (1 + L_2 L_3 L_5) \delta + \frac{\varepsilon}{1 - M}$$

for k > N.

As *M* was chosen so as to satisfy $||J(\bar{x})|| < M < 1$, we see that there exists a constant K > N such that

(4.6)
for
$$k > K$$
. Therefore, for $x^{(k)} \in U(\overline{x})$,
 $\|y^{(k+1)} - \overline{x}\| \leq \left[(1 + L_2 L_3 L_5) \delta + \frac{1}{1 - M} \right] \varepsilon$

follows from (4.5) by using (4.6), provided k > K. This proves our Theorem 5. In this way, we have proved Theorems 4 and 5, as desired.

Remark 1. We note that, for $x^{(k)} \in U(\bar{x})$,

$$\| \varDelta x^{(k)} \| \leq (M_1 + 1) \| d^{(k)} \|$$

holds from (3.1), by Theorem 1. So we can take M_1+1 as L_2 in (3.4).

The author would like to express his hearty thanks to H. Mine, Professor Emeritus of Kyoto University, for many valuable suggestions.

References

- [1] P. Henrici: Elements of Numerical Analysis. John Wiley, New York (1964).
- [2] T. Noda: The Aitken-Steffensen formula for systems of nonlinear equations. Sûgaku, 33, 369-372 (1981) (in Japanese).
- [3] ——: The Aitken-Steffensen formula for systems of nonlinear equations. II. ibid., 38, 83-85 (1986) (in Japanese).
- [4] ——: The Aitken-Steffensen formula for systems of nonlinear equations. III. Proc. Japan Acad., 62A, 174–177 (1986).