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17. Inverse Iteration Method with a Complex Parameter

By Toshio Suzuki
Department of Mathematics, Yamanashi University

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1992)

1. Introduction. The inverse iteration method has been used as one
of the most powerful ways for computing eigenvectors. And the theory
of error estimates has been established almost completely as is seen in
Wilkinson [2]. Let A be a symmetric (r,n) matrix and let {1,,4¢.}, k=1,
..+, m, be pairs of eigenvalues and the corresponding eigenvectors of A.
The inverse iterarion process for the eigenvector ¢, is to solve the follow-
ing linear equations with initial data 2® under the conditions |1;,—1|<c<
|4 — 2, (B=7):

1.1 A-Dz™Y=z™ m=0,1,2, ...

In this paper, we propose to introduce into this method a new technique,
which is simple but effective in practical computations. Our method is to
solve the same linear equation, but with a complex parameter 1++ —1z
instead of real 2 in (1.1) and to carry out the next iteration process after
substituting the imaginary part of the solution for the initial vector. We
can show that the imaginary part y of the solution of the linear equation
contains the component of the aimed eigenvector far more than the real
part x. The ratio of the I* norms ||z||/|ly|| can be used to derive a sharp
error estimate for the computed eigenvector. It may be emphasized that
the error bound given by (2.6) in Theorem 2.2 is rather effective so that
one can judge how many digits in actual computations are correct in sig-
nificant decimals by estimating the right hand side of (2.6). It is also
emphasized that in our method the efficiency of enriching the component
of the aimed eigenvector is almost doubled compared with the standard
traditional method.

In §2, we explain our method and state the theorems. In §3, we
show some propositions which describe how our method works. When
we refer to the traditional method based on (1.1), we call it, for brevity,
the standard method. Our main purpose here is to present the idea of
our method. So throughout this paper, we state our theory as if rounding
errors were zero.

2. A new method with a complex parameter and the theorems. Let
A be a real (n,n) matrix which is symmetric and has n different eigen-
values. Let {a,,¢.}, k=1,2,8, ..., n, be pairs of eigenvalues and the cor-
responding normalized real eigenvectors of A. First we describe our
method for computing the eigenvector ¢, corresponding to the eigenvalue
2; under the following assumption.
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Assumption H. Figenvalues 1, k=1,2, ---,n, of A are known with
the following accuracy: There are three numerical constants ¢, ¢ and 2
such that inf,;|2;,—2,|>2¢, |2;,—2|<e and 0<2:<c.

Let ¢ be an initial vector and let = be a positive number smaller than
e.  Our iteration process consists of the following three steps where u™
and v™ are real vectors.

2.1 (A—-2m]—& =1cDw™ =z™ where 2@ =g, 19 =3},
(2.2) me1) “vzmzu where ™ —y® 4 r‘jlv""),
/v m
(2.3) l(mﬂ):{(Az(mn), z(mn))’ if “,U(m)“ > “u(m)“’
™ otherwise.

The most essential and characteristic feature of our process is the
second step (2.2) where the imaginary part of the solution of the linear
equation (2.1) is taken as an approximating eigenvector. In the third
step (2.3), we change the value 2 to a better approximating value obtained
by Rayleigh-Ritz formula where the inequality |1,—2™*"|<e also holds as
is seen in Proposition 3.1 later. The following theorem guarantees that
this iteration process works well.

Theorem 2.1. If the assumption H is satisfied, the iteration process
(2.1)-(2.3) excites the component of the eigenvector ¢,, namely z™—+¢; as
m—oo0, provided |r|<e.

Before the proof of Theorem 2.1, we need some preparations to sim-
plify the notations. Consider the following equation with ||z||=1

2.4) A—-A—v—-1Dw=z.
Let z=3 7., ay$,. Then we have
u 1
2.5) Z=: P «/— S,
2 G e T L g o

Put xkz(xk—x)/((zk—_z)2+tz)ak¢k and yk=f/((2k‘—1)2+fz)ak¢k' Let x=ZZ=1 Ly
and y=3 3.1 Y.
Proof of Theorem 2.1. For the proof we observe that
Wl _ (Re=2P+e) gl < 2—2F lay] o & oyl
Il (Z—2F+7) |l 28 o] 28 |ay
Thus the component of the aimed eigenvector ¢, is more excited than that
of any other eigenvector ¢, with the relative order greater than 2(¢/2¢)*>1
because ¢>2¢. This means that the components of ¢,’s for k+j in z™
dump down exponentially through iterations. So z™ approaches to +¢,
as m—>oo.
Next, we consider the error estimates. As is seen from (2.2) and
(2.3) of our process, y is our approximation and y, is the true eigenvector,
so that we have only to estimate ||[y—y,].

Theorem 2.2. Put d=|z|/|yll. Under the assumption H, the rela-
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tive error ||ly—y,l| /|yl is estimated as

(2.6) ly—y,ll <Zs.
lyll  — ¢
Proof. Since
_ |A&—4 _ %=1 7| ¢
2.7 [l | T2+ la o h—afte [ | > B llyells
we have
2.8) ly—yillP= > 1P < 3 ol < -l
k#j k+j C C

Thus (2.6) follows.

Error estimate for the standard method is as follows. Let (A—2aI+
E)w=z"™ with the rounding error term E. The estimate |E|<K,/ n2*
is known for t-digits floating point computers. Put z=@/|w| and 5=
(A—2aDz. Then ||y|<||E||+1/||w| is satisfied. Let z2=3 a,¢, with ||z|*=
>.a;=1. The known error estimate for zZ—a,s, is as follows (see At-
kinson [1]):

2.9) IIZ—%@IIS—}IMH-

In the corresponding inequality (2.6) of our method, the estimating value
for the value ||Z—a,4,|| is smaller than the right hand sipe of (2.9) about
by the factor . (Note that ||w| is about as large as |1—2,|" so that |p| is
about as small as |2—2,|~z.)

3. Propositions and remarks. In this section we state supplemen-
tary propositions and remarks. The proofs will be published elsewhere
with some generalizations. The first proposition shows that in the itera-
tion process (2.1)-(2.3) the inequality |1,—2|<e in the assumption H con-
tinues to hold after the approximating eigenvalues are replaced in (2.3).

Proposition 3.1. Let x and y be the real and the imaginary part of
the solution of the equation (2.4) with |z|<e under the assumption H in
which the inequality |2,—2A|<e is assumed. Put i=(Ay,y)/|ly|> If |ly|>
||, then |2,—A|<e.

In order to compare the efficiencies of our method and the standard
one, the following proposition is important, where 1 and 2’ should be con-
sidered to be the parameters used in our method and in the standard one,
respectively.

Proposition 3.2. Choose ¢ as t<<e and suppose that |1,—2|<z and
|4;—X|<t. Let 2, be the eigenvalue which attains inf,,,|i,—2|, that s,
|2, —A\=inf, ., |2, —2). If
3.1) |21—2F+72£ |2, =]

|4 —AP+7 7 (4 —7

then, for any k7,

3'2 le'—‘zlz‘*'Tz < lZ,-—Z'] ( c+5 >.
®-2 e AP+ [A—2 \o—e
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Remark 3.3. It is seen from the proof of Proposition 3.2 that, if

A=2/, the inequality (3.2) can be rewritten in the following form:
|2, =2+ _12,—2]
@3 Ty I

Since the terms of the left and the right hand sides of (3.3) represent
the relative exciting rates of the aimed eigenvectors of two methods, we
can derive the range of ¢ from the inequality (3.1) where our method
works better than the standard one. Put J=(2;,—21|, L=|1,—2}, J'=|1,— |
and L'=|4,—2|. Then the inequality (3.1) is equivalent to the following:

2 2 2
As one gufficient condition for z/J’ to satisfy (3.4), we can give the follow-
ing one provided that 4e<<¢ and J<J’:

2

(3.5) ;,2 g_j_.
As far as the condition numbers of the linear operators in equations (2.1)
and (1.1) are concerned, it can be said that our method is of advantage to
the standard one, since the value ¢/¢ in (8.5) is taken far greater than 1 in
many cases.

Remark 3.4. The inequality (8.5) can be interpreted as asserting
that with the value of ¢ determined by |2,—X|=1+¢/c¢ our method works
as effective as the standard one with the parameter 7.

Remark 3.5. In the case r«e¢, the inequality (8.3) shows that the
relative excitation rate of our method is nearly of order two while that of
the standard one is of order one.

4. Numerical examples. We carried out some numerical experi-
ments for symmetric matrices and had satisfactory results which indicate
that our method works well as theory indicates. Here we first present a
simple but non-symmetric example which describes our theory more clear-
ly. It can be easily seen that, when we know almost exact eigenvalues,
our method can be applied to the non symmetric matrix with different
real simple eigenvalues if (2.3) in the iteration process is omitted.

Example 4.1. We consider the case n=2. Let matrix A=(a, ) with
0,,=1, a,,=1, a,,,=10"", a,,=1. We know the eigenvalues and eigenvec-
tors: 4,=1.00001, 2,=0.99999, ¢,=(1,10"°) and ¢,=(1, —107°). (As for
this matrix A, see Peters and Wilkinson [3].) We denote the supremum
norm by [x|. and the normalized computed eigenvector by ¢™. The
results are shown in Tables (1-1) and (1-2).

Table (1-1) The results of our method

2 T m lgs—0™ Il
1. 00001 10-% 0 .100x10-*
. 99999 10-10 0 .100x10-*
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Table (1-2) The results of the standard method

A5 12,—4| m iy —ll--
1. 00001 10~ 0 .100x 10~
. 99999 10-1 0 .100x10-*

Though eigenvectors are not orthogonal, it is easily seen that Proposition
3.2 is valid for I norm instead of I* norm and so is the inequality (3.5).
The values of z and |2,— 4] are chosen, following Remark 3.4, so that our
method brings better excitation than the standard one.

Next example is the case of a symmetric matrix with a greater size.

Example 4.2. We tried the case n=20 and 2,=2.04+(k—1)x10°, k=
1,2,...,20. The matrix A is given by A=373, A,¢.4. Where ¢,’s are or-
thonormal vectors previously constructed from randomly selected column
vectors. We show here in Tables (2-1) and (2-2) the results of only one
case 1;,=2. 00009 which lies in the midst of 2,’s.

Table (2-1) The results of our method

=211 | m | lg—e™I 5 e/
10-1 10-° 0 . 643 x10-® .130x10-® . 261107
10-1 10-° 1 . 613101 . 679x10-* . 13610
10-° 10-° 0 . 129107 . 100 x 10 .200x 103
10-° 10-° 1 . 128 10-% .168x10-* . 335101
10-1 10-4 0 . 6481012 .100x10-¢ .200<10-®
10-1 10- 1 .613x10-* .679x 108 .136x10-%

Table (2-2) The results of the standard method
|2,— 2] m llg;—o™ I ple
10-1 0 . 835108 . 544107
10-% 1 . 643 10-1¢ .200x 10"
10-% 0 . 835x 101 . 544 10-°
10-13 1 . 643102 .200<10-°

These results show that the iterations (2.1)-(2.3) works well and Remark
3.4 is also true here. Especially, it should be emphasized that the value
(zd/c) of the error bound is very close to the computated value of ||¢,—¢™|.

Remark 4.3. Our numerical tests were done by HITAC M-682H (at
Computer Centre, University of Tokyo) and computations were carried
out in quadruple precision to avoid the influences of rounding errors as
much as possible.
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