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1. Introduction. The subject treated here is an attempt to under-
stand the efficiency of algorithms for solving non-linear equations. Among
others, Newton’s method plays a central role in root-finding algorithms
for polynomials. The global study of this algorithm leads to a theory of
complex dynamical systems of rational functions.

We write N" PC’-C’, where P is the space of polynomials of
degree _d and C" is the Riemann sphere C [J{oo}. Then Newton map,
N(p, z) N(z) z-- p(z)/p’(z), is rational over C" for p e P and z e ; that
is, N can be formed from the complex rational operations from the coeffi-
cients of p and z. If z is sufficiently close to a root a of p, then the se-
quence defined by zl Np(z), z2-- N(z) Np(zl), ., z N(z) Np(z_ 1) con-
verges to a as k tends to oo. However, as is well known, there is an open
set U in P C" such that this convergence will not happen for (f, z) in U.
Consequently, for Newton’s iterative scheme, two distinctly different types
of behavior have been observed. In the first case, this algorithm succeeds
for aa open dense set of starting points. The set of exceptional points is
closed, nowhere dense and has two dimensional measure zero. The second
case exhibits an open set of initial conditions where this algorithm fails.
The failure is due to the existence of an attracting periodic cycle of a
Newton map.

In Smale ([10]), he conjectured that there exists no generally con-
vergent purely iterative algorithm for finding roots of polynomials.
C.McMullen ([4]) answered the question by showing that there is no such
algorithm for polynomials of degree _4. Here "purely iterative" means
that the algorithm can be expressed as a discrete dynamical system on C"
parameterized by the polynomial. However it was shown by M. Shub and
S. Smale ([9]) that if one adds the operation of complex conjugation, then
there do exist such algorithms.

In this paper, we shall analyze the global behavior of Newton map
from the viewpoint of complex dynamics of rational functions. In Section
2, we give a complete criterion for a rational function to be a Newton’s
method as applied to a polynomial map. In Section 3, we study how one
can guarantee success of Newton’s method, by measuring the width of
basins of roots.

2, Characterization of rational functions to be a Newton map. For
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a polynomial p(z), we define Newton map as follows.

N(z) z--P(z)
p’(z)

Hereafter p(z) is a polynomial o degree d. It is clear that if p(z) has n
distinct roots then N, is a rational unction of degree n.

The following facts concerning an immediate basin B(a) ([z N(z)-
a(n-c)}) of Newton map N are known, where a is a root of p.

1. B(a) is simply connected ([7], [8]).
2. c lies on the boundary of B(a) for every root a of p(z) ([3]).
3. I the local degree o NI( is s, then B(a) approaches

different directions ([7]).
Let x0 be a periodic point of period s, i.e. f(xo)=Xo for a rational

unction f. If x0=/=c then we define eigenvalue of x0 as ollows"
(f)’(Xo). A periodic point x is said to be attracting if 01211, super-
attracting if 2=0, neutral (indifferent) if ]2]=1, and repelling i

A rational function f is (analytic) conjugate to a rational function g
iff there exists a MSbius transformation A(z) (az / b) / (cz / d) e PSL(2, C),
satisfying A f(z)= g A(z).

The following facts are known on fixed points of N.
1. The set of fixed points o N(z) is {c}
2. If a is a root of p(z) with multiplicity m, then N’;(a)=(m--1)/m.

Hence or ml, a is attractiug and or m--l, a is super-attracting.
3. c is the unique repelling fixed point of N, and its eigenvalue is

all(d-l).
We have now the ollowing undamental result.
Theorem 2.1. The next two statements are equivalent for a ratioal

function f of degree d.
1. f has distinct d fixed points, z, z,...,z, whose eigenvalues are

given as f’(z)--(m-l)/m, m e N, i=1,..., d.
2. There exists a polynomial p for which Newton map N, is conju-

gate to f.
This theorem covers the result by J. Head as a corollary:
Corollary 2.2 (Head) ([2]). Any rational function f of degree d hav-

ing d distinct super-attracting fixed points is conjugate to the N for a

polynomial p of degree d.
For the proof of Theorem 2.1, we need some definitions and results

due to Milnor ([5]). The multiplicity of a fixed point Zo of f(z) is defined
as, ollows. I f’(z0)=/=l, multiplicity of zo is 1. If f’(z0)=l, then the Taylor
expansion of f at z0 is

f(z) Zo + (Z Zo) + a(z Zo) /
In this case, multiplicity is defined by m.

The holomorphic index, of a fixed point z0 is defined as follows:

(f zo) 1 1 dz Res( 1 )= z-zo : z- f(z) z- f(z)
Zo
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Note that the index at z0 is a local analytic invariant. That is, if g is
locally conjugate to f under , then (f; z0)=(g (z0)).

Theorem 2.: (Milnor)([5]). For a rational function f(z) (z), we
have (z)_-z dr; z)--l. If zo-- f(Zo), f’(Zo)=2l then (f; z0)=l/(1--2).

Outline of proof of Theorem 2.1. 2. @1. is easy. Now we shall
show that 1. @2. Note that f(z) has precisely d+l fixed points. Let
be a fixed point z, (i=1, ..., d). The multiplicity of the fixed point is
1, because that multiplicity of each fixed point z (1GiGd)is 1.

Put k= i=1 mi. Then we get f’()=k/(k--1) from the equation,
1 14f; z)= =.

() 1--(m--l)/m 1--f’()
Hence it turns out that 5 is a repelling fixed point.

If 5 then by a change of coordinate, is transformed to , and f
to a conjugate rational function f. We denote f by the same f for the
simplicity of the notation.

Hence we can write f(z)-q(z)/r(z) where q(z) and r(z) are polynomials
of deg q d and deg r d.

After calculation, we get r(z)==m. (z--z). Put Po(z)-
C" di=l (Z-- Z). Then we have

(z-z)-f(z)- z- c (z z)
_

= m ij (z-- zj) di=l (Z- Zi)mi-1

z-- PZ=No(Z).
p(z). Sutherland’s estimate for the basins of Newton map. In order

to have an estimate on the complexity of a root-finding lgorithm, we need
a compactness condition under a suitable norm on the space of polynomials.
This can be done by placing conditions either of the location of the roots
or of the coefficients. Hence we consider hereafter a polynomial in the
amily (1)"

(1)={p(z)=z +a_z-’+ +a0, labial (i=0, ...,
Moreover i a_=0 then p(z) is called centered polynomial. It is possible
to transform linearly an arbitrary polynomial p(z) into an element q(z) of
(1). Note that the Newton map N induced by p is conjugate to N
induced by q. Therefore, without loss of generality, we can treat only
centered polynomials p e (1), after such conjugacy.

Let B(a) be an immediate basin o attracting fixed point a (a root o p)
of N. In [10], Smale asks for a lower bound on the area of B(a) {z;]z
2}. In [3], Manning attempted to estimate the size of B(a), or solving

Smale’s question. In [11], Sutherland improved Manning’s result, but as
we have shown in [6], some of his results should be corrected, parSicularly
his Proposition 3.5 which surves as key lemma for his later development.
In this section, we shall show that this Froposition 3.5 in [11] can be re-
placed by the ollowing Theorem 3.2.
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Definition 3.1. Any annulus can be mapped by an analytic diffeomor-
plism onto a unique "standard annulus" whose inner boundary is the unit
circle and with outer boundary the circle of radius e’’ for some m e R+.
In this case, the modulus of the annulus is said to be m.

Theorem 3.2. Let T be a torus, isomorphic to C/(ZZr), and A an
annulus with modulus(A)--m, contained in T (see Fig. 1). Then the
distance between the boundary curves of A is at least

2ke/

i + e---/--’

where k=min {1, (r)},
Fig. 1

Proot ot Theorem. Consider an open ellipse whose major axis is the

interval (--r/l/r r+l/r)and minor axis is (-r-1/r i, r--1/r i).2 2 2 2

Remove two points --1, I rom the ellipse and denote by E the resulting

set. Let F be the set of curves in E which join the boundary of the ellipse
passing through the interval (--1, 1).

The map z(z+l/z)/2 is two to one. And a punched annulus

PA= z --<lzi< r --{--1,1}
r

is mapped to E. Let F’ be the set of curves in PA joining inner boundary
and outer boundary.

PA E
Fig. 2

Then the extremal lengths are calculated as follows:

2(F’)=l logr, and 2(F)=2 logr.

We may assume that the "narrow part" of this embedded annulus is
located at the center of T. Let be the width of the narrow part of E.
Scale the ellipse by/t/2 and embed it in T so that the interval [-/2,
corresponds to the narrow part.

Let

where k min {1,
Fig. 3
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Let F be the family of closed curves in the annulus A that have
nontrivial homotopy. Then 2(F)=l/m. Since each curve in F contains
a curves in F, we have

1__. > 2(F)= 21 g_r_= 2 log ((k/)+ /(/3)-- 1).
m 7 7r

Solving for , we obtain

1 + exp (u/m)
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