34. Generating Functions for the Spherical Functions on Some Classical Gelfand Pairs

By Shigeru Watanabe
Sophia University
(Communicated by Shokichi Ifanaga, m. J. A., June 9, 1992)

Introduction. Let \boldsymbol{F} be $\boldsymbol{R}, \boldsymbol{C}$ or \boldsymbol{H} i.e. the field of real or complex numbers or of quaternions, and $x \mapsto \bar{x}$ the usual conjugation in \boldsymbol{F}. We define the following quadratic form in \boldsymbol{F}^{n+1}.

$$
(x, y)_{-}=-\bar{x}_{0} y_{0}+\bar{x}_{1} y_{1}+\cdots+\bar{x}_{n} y_{n} .
$$

Let $U(1, n ; F)$ be the group of the linear transformations g in F^{n+1} which satisfy $(g x, g y)_{-}=(x, y)_{\text {_ }}$ for all $x, y \in F^{n+1}$. We define the group G as follows.

1. If $\boldsymbol{F}=\boldsymbol{R}, G$ is the connected component of the unit element in $U(1, n ; R)$, i.e. $G=S O_{0}(1, n)$.
2. If $\boldsymbol{F}=\boldsymbol{C}, G$ is the group of all the elements $g \in U(1, n ; C)$ of determinant one, i.e. $G=S U(1, n)$.
3. If $\boldsymbol{F}=\boldsymbol{H}, G=U(1, n ; \boldsymbol{H})$, i.e. $G=S p(1, n)$.

Let $B\left(\boldsymbol{F}^{n}\right)$ be the unit ball in \boldsymbol{F}^{n} and $S\left(\boldsymbol{F}^{n}\right)$ be the unit sphere in \boldsymbol{F}^{n}. The group G acts transitively on $B\left(F^{n}\right)$ and $S\left(F^{n}\right)$ as follows:
for $x={ }^{t}\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{F}^{n}$ and $g=\left(g_{p q}\right)_{0 \leq p, q \leq n} \in G$, we define

$$
x^{\prime}=g x,
$$

where $x^{\prime}={ }^{t}\left(x_{1}^{\prime}, \cdots, x_{n}^{\prime}\right)$, with

$$
x_{p}^{\prime}=\left(g_{p 0}+\sum_{q=1}^{n} g_{p q} x_{q}\right)\left(g_{00}+\sum_{q=1}^{n} g_{0 q} x_{q}\right)^{-1}, \quad 1 \leq p \leq n
$$

Let K be the isotropy group of $O \in B\left(F^{n}\right)$ in G. Then K is a maximal compact subgroup of G and $G / K \cong B\left(F^{n}\right)$. Let $G=K A N$ be the corresponding Iwasawa decomposition and M be the centralizer of A in K. Then M is the isotropy group of $e_{1}={ }^{t}(1,0, \cdots, 0) \in S\left(F^{n}\right)$ in K and $K / M \cong S\left(F^{n}\right)$ is the Martin boundary on $G / K \cong B\left(F^{n}\right)$. As is well known (cf. [1], [2]), the spherical functions on K / M play an important role in the harmonic analysis on G / K.

We note:

$$
K \cong\left\{\begin{array}{ll}
S O(n) \\
U(n) & \text { (if } \boldsymbol{F}=\boldsymbol{R}) \\
S p(1) \times S p(n)
\end{array} ; \quad M \cong \begin{cases}S O(n-1) & \text { if } \boldsymbol{F}=\boldsymbol{C}) \\
U(n-1) \\
S p(1) \times S p(n-1) & \text { (if } \boldsymbol{F}=\boldsymbol{H})\end{cases}\right.
$$

Let φ be a zonal spherical function of the real case $S O(n) / S O(n-1) \cong$ $S\left(\boldsymbol{R}^{n}\right)$. Then φ depends only on $\eta_{1}\left(\eta={ }^{t}\left(\eta_{1}, \cdots, \eta_{n}\right) \in S\left(\boldsymbol{R}^{n}\right)\right.$) and there exists a unique nonnegative integer p such that

$$
\varphi(\eta)=C_{p}^{(n-2) / 2}\left(\eta_{1}\right) / C_{p}^{(n-2) / 2}(1), \quad \eta={ }^{t}\left(\eta_{1}, \cdots, \eta_{n}\right) \in S\left(\boldsymbol{R}^{n}\right)
$$

where $C_{p}^{(n-2) / 2}$ is the Gegenbauer polynomial. It is well known that a gen-
erating function for the Gegenbauer polynomials $C_{p}^{(n-2) / 2}, p=0,1,2, \cdots$, is given as follows.

$$
\left(1-2 t x+t^{2}\right)^{-(n-2) / 2}=\sum_{p=0}^{\infty} C_{p}^{(n-2) / 2}(x) t^{p}, \quad-1 \leq x \leq 1, \quad-1<t<1
$$

This formula also gives a generating function for the zonal spherical functions of $S O(n) / S O(n-1)$.

In this paper, we shall show that we can also give generating functions for spherical functions in the complex and the quaternion cases. The proof will be published elsewhere.

Suppose that $n \geq 2$ throughout this paper.

1. Complex case. Let $H_{p, q}^{(n)}$ denote the space of restrictions to $S\left(C^{n}\right)$ of harmonic polynomials $f(\xi, \bar{\xi})$ on C^{n} which are homogeneous of degree p in ξ and degree q in $\bar{\xi}$. Then it is known (cf. [2], [3]) that $H_{p, q}^{(n)}$ is $U(n)$ irreducible and moreover $L^{2}\left(S\left(C^{n}\right)\right)=\oplus_{p, q=0}^{\infty} H_{p, q}^{(n)}$. Let $\varphi_{p, q}^{(n)}$ be the zonal spherical function which belongs to $H_{p, q}^{(n)}$. Then a generating function for the functions $\varphi_{p, q}^{(n)}$ is given in the following theorem.

Theorem 1. If $w, z \in C,|w|<1,|z| \leq 1$, then

$$
\begin{equation*}
\left(1-2 \operatorname{Re}(w z)+|w|^{2}\right)^{1-n}=\sum_{p, q=0}^{\infty} a_{p q}^{(n)} Q_{p q}^{(n)}(z) w^{p} \bar{w}^{q} \tag{1}
\end{equation*}
$$

where

$$
Q_{p q}^{(n)}\left(\eta_{1}\right)=\varphi_{p q}^{(n)}(\eta), \quad \eta \in S\left(\boldsymbol{C}^{n}\right)
$$

and

$$
a_{p q}^{(n)}=\frac{\Gamma(n+p-1)}{\Gamma(n-1) \Gamma(p+1)} \frac{\Gamma(n+q-1)}{\Gamma(n-1) \Gamma(q+1)} .
$$

The series on the right hand side converges absolutely and uniformly for $|z| \leq 1$ and $|w| \leq \rho$ for each $\rho<1$.

In the formula (1), if we put $w=r e^{i 0}$, then we have

$$
\begin{equation*}
\left.\left(1-2 r \operatorname{Re}\left(e^{i \theta} z\right)+r^{2}\right)^{1-n}=\sum_{p, q=0}^{\infty} a_{p q}^{(n)} Q_{p q}^{(n)} z\right) e^{i(p-q) \theta} r^{p+q} . \tag{2}
\end{equation*}
$$

This formula can be interpreted as follows.
The zonal spherical functions $\varphi_{p q}^{(n)}$ appear as the coefficients in the expansion of the left hand side of (2) by the powers of r and the spherical functions of $U(1) \cong S\left(\boldsymbol{R}^{2}\right)$. This interpretation for generating function will be adapted to the quaternion case.
2. Quaternion case. A zonal spherical function φ of K / M depends only on η_{1}, more precisely on $\operatorname{Re}\left(\eta_{1}\right)$ and $\left|\eta_{1}\right|\left(\eta=^{t}\left(\eta_{1}, \cdots, \eta_{n}\right) \in S\left(\boldsymbol{H}^{n}\right)\right)$, and there uniquely exists a pair of nonnegative integers (p, q) such that

$$
\varphi(\eta)=c_{p_{q}} C_{p}^{1}\left(\frac{\operatorname{Re}\left(\eta_{1}\right)}{\left|\eta_{1}\right|}\right)\left|\eta_{1}\right|^{p} F\left(-q, p+q+2 n-1 ; p+2 ;\left|\eta_{1}\right|^{2}\right),
$$

where

$$
c_{p q}=\frac{(-1)^{q}(p+2)_{q}}{(2(n-1))_{q}}\left[C_{p}^{1}(1)\right]^{-1} .
$$

See Theorem 3.1 in [3], p. 144 and the formula (16) in [1], p. 170 and we follow the notations in [4]. From now on, we denote φ by $\varphi_{p q}^{(n)}$. Then a
generating function for the functions $\varphi_{p q}^{(n)}$ is given in the following theorem.
Theorem 2. If $z \in \boldsymbol{H},|z| \leq 1, u \in S p(1)$ and $0 \leq r<1$, then
(3) $\int_{S_{p(1)}}\left[1-2 r \operatorname{Re}\left(m z m^{-1} u\right)+r^{2}\right]^{1-2 n} d m=\sum_{p, q=0}^{\infty} \beta_{p q}^{(n)} R_{p q}^{(n)}(z) C_{p}^{1}(\operatorname{Re}(u)) r^{p+2 q}$,
where $d m$ is the normalized Haar measure on $S p(1)$ and

$$
R_{p q}^{(n)}\left(\eta_{1}\right)=\varphi_{p q}^{(n)}(\eta), \quad \eta \in S\left(\boldsymbol{H}^{n}\right)
$$

and

$$
\beta_{p q}^{(n)}=\frac{p+1}{\Gamma(p+q+2)} \frac{(2 n-1)_{p+q}(2 n-2)_{q}}{q!} .
$$

The series on the right hand side converges absolutely and uniformly for $|z| \leq 1, u \in S p(1)$ and $r \leq \rho$ for each $\rho<1$.

The formula (3) means that the zonal spherical functions $\varphi_{p q}^{(n)}$ appear as the coefficients in the expansion of the left hand side of (3) by the powers of r and the spherical functions of $S p(1) \cong S\left(R^{4}\right)$.

Acknowledgement. The author would like to thank Professor R. Takahashi for his helpful suggestions.

References

[1] Erdélyi, A. et al.: Higher Transcendental Functions. vol. 2, McGraw-Hill, New York (1953).
[2] Faraut, J. and Harzallah, K.: Deux Cours d'Analyse Harmonique. Birkhäuser, Boston (1987).
[3] Johnson, K. D. and Wallach, N. R.: Composition series and intertwining operators for the spherical principal series. I. Trans. Amer. Math. Soc., 229, 137-173 (1977).
[4] Takahashi, R.: Lectures on harmonic analysis in hyperbolic spaces (in preparation).

