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Some Problems of Diophantine Approximation in the
Theory of the Riemann Zeta Function
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Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., June 9, 1992)

Introduction. Let a be a positive number. The distribution of the
ractional part {an} of an has been studied extensively. It is well-known
that it depends heavily on the arithmetic nature of a. We may briefly
recall this act for a quadratic irrational a as follows. It was shown by
Hardy-Littlewood [6] and Ostrowski [8] that

nx
<<logX.

Hecke [7] has shown, in act, that if a is JD or 1/JD with a positive
square free integer D2 or 3 (mod 4), then for any e0

{n}- lo =A lo X+A lo X+A lo X

+ CX(/(,o+O(X-,),

where A, A, A and C are some constants, C=O(Iml-+) for mO and. is the fundamental unit of the quadratic number field (D) or the

suare of it. he author [4] [g] has extended his result and shown that
for any

({} 1)log =X1 ()log X+()log X
+ / +O(X-

where G() and G() can be explicitly written down in terms of the contin-
ued fraction expansion of and C--O(lml-’*) for

Here we are concerned with the distribution of
1

where runs over the positive imaginary parts of the zeros of the Riemann
zeta unction (s). Our main problem is to find an asymptotic ormula or
the sum

and determine how it depends on a. Our result is not precise enough for
*) The author acknowledges the financial support of SFB170 of Mathematisches

Institut, GSttingen, Germany.
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this sum. However, we shall give a finer result on the asymptotic behav-
ior of the sum

and see, in particular, a singular property when e" is a prime power.
The following theorems will be proved. Let N(T) denote the number

of the zeros of (s) in 04s T, which is known to be

___T log T.
2

Let R. H. be the abbreviation of the Riemann Hypothesis.
Theorem 1. For any positive a and TTo, we have

1 1 log

Theorem 2 (Under R.H.). For any positive , positive e and T
we have

<<(m) , (o )’-

1 F 1 Io Io T

Theorem 4 (Under R.H.). Sppose $ha$ either or i8 algebraic.
Then for any positive and T> To, we have

({ } { } 1) T (e) Li(e_/)r a- a + 2 G
+0

(logT)’-

where A(x)=log p if x=p with a prime number p and an integer kl, =0
otherwise, we put

X
Li(x)=l--n--

and G is either the minimum integer n( l) such that e is a prime power,
or 1/a if sch n does not exist.

It is clear rom the proo of Theorem 4 that the same conclusion holds
for a of the orm rio+=, fl log a with non-zero algebraic numbers
1, 2, 3, ., M and algebraic numbers , ]=0, 1, 2,. ., M. Other cases for
a are includ in the ollowing general theorem.

Theorem 5 (Under R.H.). For any positive a and T> To, we have

As we know, {x}-l/2=B,({x}) and {x}--{x}+I/6=B({x}), with the
Bernoulli polynomials B, and B. Similarly, we can evaluate the sums

or n3.
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2. Proof of Theorem 1. Let H be a sufficiently large number
which well be chosen later. We decompose our sum as ollows.

1

- +
/H {a (/2.) -/H

SI+S, say.
To estimate S, we shall use the following lemma which gives a discrepancy
estimate of the uniform distribution

Lemma 1. For any a>O, any positive e and for T> To, we have
1

N(T)
uniformly for fl in 0 fl < 1.

This is proved in Fujii [2].
Applying this we get

S (( 1 + 1
rT rT

0 {a (r/2) <I/H 1/H< {a (r/2) <1

For S, we notice first that if a(r/2z) is not an integer,

< sin (r)+0
2 k g I(r/2)l

where ]x denotes the distance of x from a nearest integer.

Using this expression, we get

S=- 1
<r sin(r)+O( r

1 )
=Sa+S, say

<r 1-- {a(y/2)}
/H (r/2) /2

HI2
m/H (7/2) < (m 1)

< [(/2)}

+. 1-{(/2)}m/Hl- {a(/2) (m+l)/H

1 1
lmH/2 m rET lmtI/2 m

m/H {a (r/2=) < (m 1) /H 1- (m 1) /H< {a (r/2) 1-m/H

Using Lemma 1 again, this is

<log H( N(T)H +N(T)(log T)- ).
We turn to estimate S.

1 sin (k-)+ 1 sin (Ice<T)S=
lk_H - r_T I_,_H 17 YT,O{a(r/2=)}l/H

1/H (r/2n) <
$5+ $6, say.

Using Lemma 1, we get as before
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Finally, we shall estimate S. For this purpose we shall use the ol-
lowing lemma which has been proved in [3].

Lemma 2. For 1X((T/- , e0 and T To,

X<< T lg X+Min ( lg X-’ logT).< log
Using this we get

S(< l(Tk+Min(lgT TlogT))((TH.
Consequently, we get

[N(T)H T) ) TH.S<log[- -+N(T)(log -+ +
Choosing H Jlog T log log T, we get

N(T) log T. Proof of Theorem 2. If we assume R. H., then we can use an
improvement of Lemma 2 in the following form (cf. Fujii [3] for a more
precise result).

Lemma (Under R.H.). For X) I and T To, we have

x= T A(X) (og og T
2 JX O_ log X +J log X

(log log T)

+Jlog(3X)loglog(3X)+ log(2X)Min(T 1
#X [logX]P(X)

where P(X) is the nearest prime power other than X itself.
If we apply this, then S in the previous section is

l(lgT---i logT +kT)
Then thisHere we choose H=C log T with a sufficiently small positive C.

is
<<T.

Consequently, we get

<< logn,+N(T)(log T) + T

4.
5 first.

4N(T)(log T) -1+.
Proof of Theorems 3, 4 and 5. We shall prove Theorems 4 and

By he Fourier expansion of {x}2--{x}+l/6, we get
1

nCOS(ay)+O Min 1,
<T InH 7gT H }a(7/2)

=U+U, say,
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where we suppose that l((HClogT with a sufficiently small positive
number C.

Using Lemma 1 as in the previous section, we get

1-1/H< {a (r/2) < m/H<_ (r/2) (m 1)/H

+-H ./ ._< 1- {(r/2)}m/Hgl- {a (r/2) < (m+ l)/H

H
Using Lemma 3, we get

1U,= n cos(nr)
lnH

1 ( T A(e) (logT) ( logT ).n: /_ +0 +0 e"n- 2 n (log log Ty

-Ji-O(ena/2log(3))--O( Min (T, 1 .)))en"/ log e / (p(en"))l

TlA(en") ) ( 1 Min(T, 1 ))2 n,en.l+O(T +0 1 nen.i iloge./(p(en.))
Suppose first that e" is algebraic. Then by the formula of 1.7 in p. 3

of Baker [1], we get for n1 and with some positive constant D depending
only on a,

log
P(eO =log e-log P(e91e-.

Consequently, he last remainder erm is

Choosing H=C log T, we get in this case

({ -} { _} 1) T A(e.) Li(e (/)) ( T- +
G

+O
(logT)

Suppose next that a is algebraic. Then by Theorem in p. 1 of Baker
[1], we get for n_l and with some positive constant D’ depending only on

log
P(

Then, choosing H=C(logT)/(loglogT), the last remainder term in Ui is
seen to be

Hence in this case we have also the same evaluation as the first case.
Thus Theorem 4 is proved.

Generally, using a trivial estimate
1 Min(T, 1 )?lenal e

T,
--< Ilog /(P(e9)l
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we get
1

This is our Theorem 5.
To prove Theorem 3, we use the same argument as above with H=

/log T except the treatment of Us. For Us, we use Lemma 2 and get

U, (Tn+ lg T
1. /<<TlogH.

Thus e get
1 log > log H

<<T loglog T.
This is our Theorem 3.

5. Concluding remarks. The present method can be applied to
estimate the sum

where p runs over the prime numbers. The corresponding lemmas are
supplied by Vaughan in Theorems 1 and 2 of [10].
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