32. Some Problems of Diophantine Approximation in the Theory of the Riemann Zeta Function

By Akio FuJII*)
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. a., June 9, 1992)

§ Introduction. Let α be a positive number. The distribution of the fractional part $\{\alpha n\}$ of αn has been studied extensively. It is well-known that it depends heavily on the arithmetic nature of α. We may briefly recall this fact for a quadratic irrational α as follows. It was shown by Hardy-Littlewood [6] and Ostrowski [8] that

$$
\sum_{n \leq X}\left(\{\alpha n\}-\frac{1}{2}\right) \ll \log X .
$$

Hecke [7] has shown, in fact, that if α is \sqrt{D} or $1 / \sqrt{D}$ with a positive square free integer $D \equiv 2$ or $3(\bmod 4)$, then for any $\varepsilon>0$

$$
\begin{array}{rl}
\sum_{n \leq X}\left(\{\alpha n\}-\frac{1}{2}\right) \log ^{2} \frac{X}{n}=A_{1} \log ^{3} & X+A_{2} \log ^{2} X+A_{3} \log X \\
& +\sum_{m=-\infty}^{+\infty} C_{m} X^{(2 \pi i m) /\left(\log \eta_{n)}\right.}+O\left(X^{-1+\varepsilon}\right),
\end{array}
$$

where A_{1}, A_{2}, A_{3} and C_{m} are some constants, $C_{m}=O\left(|m|^{-2+\varepsilon}\right)$ for $m \neq 0$ and η_{D} is the fundamental unit of the quadratic number field $\boldsymbol{Q}(\sqrt{\bar{D}})$ or the square of it. The author [4] [5] has extended his result and shown that for any $\varepsilon>0$

$$
\begin{aligned}
& \sum_{n \leq X}\left(\{\alpha n\}-\frac{1}{2}\right) \log \frac{X}{n}=\frac{1}{2} G_{1}(\alpha) \log ^{2} X+G_{2}(\alpha) \log X \\
&+\sum_{m=-\infty}^{+\infty} C_{m}^{\prime} X^{(2 \pi i m) /(\log \eta n)}+O\left(X^{-(1 / 3)+\varepsilon}\right)
\end{aligned}
$$

where $G_{1}(\alpha)$ and $G_{2}(\alpha)$ can be explicitly written down in terms of the continued fraction expansion of α and $C_{m}^{\prime}=O\left(|m|^{-(4 / 3)+\varepsilon}\right)$ for $m \neq 0$.

Here we are concerned with the distribution of

$$
\left\{\alpha \frac{\gamma}{2 \pi}\right\}-\frac{1}{2},
$$

where γ runs over the positive imaginary parts of the zeros of the Riemann zeta function $\zeta(s)$. Our main problem is to find an asymptotic formula for the sum

$$
\sum_{\gamma \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}-\frac{1}{2}\right)
$$

and determine how it depends on α. Our result is not precise enough for

[^0]this sum. However, we shall give a finer result on the asymptotic behavior of the sum
$$
\sum_{r \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}^{2}-\left\{\alpha \frac{\gamma}{2 \pi}\right\}+\frac{1}{6}\right)
$$
and see, in particular, a singular property when e^{α} is a prime power.
The following theorems will be proved. Let $N(T)$ denote the number of the zeros of $\zeta(s)$ in $0<\mathfrak{F} s<T$, which is known to be
$$
\sim \frac{T}{2 \pi} \log T
$$

Let R. H. be the abbreviation of the Riemann Hypothesis.
Theorem 1. For any positive α and $T>T_{0}$, we have

$$
\frac{1}{N(T)} \sum_{r \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}-\frac{1}{2}\right) \ll \sqrt{\frac{\log \log T}{\log T}}
$$

Theorem 2 (Under R. H.). For any positive α, positive ε and $T>T_{0}$, we have

$$
\frac{1}{N(T)} \sum_{r \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}-\frac{1}{2}\right) \ll \frac{1}{(\log T)^{1-\varepsilon}} .
$$

Theorem 3. For any positive α and $T>T_{0}$, we have

$$
\frac{1}{N(T)} \sum_{r \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}^{2}-\left\{\alpha \frac{\gamma}{2 \pi}\right\}+\frac{1}{6}\right) \ll \frac{\log \log T}{\log T} .
$$

Theorem 4 (Under R. H.). Suppose that either α or e^{α} is algebraic. Then for any positive ε and $T>T_{0}$, we have

$$
\sum_{r \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}^{2}-\left\{\alpha \frac{\gamma}{2 \pi}\right\}+\frac{1}{6}\right)=-\frac{T}{2 \pi^{3}} \frac{\Lambda\left(e^{G_{\alpha}}\right)}{G^{2}} L i_{2}\left(e^{-(G / 2) \alpha}\right)+O\left(\frac{T}{(\log T)^{1-\varepsilon}}\right)
$$

where $\Lambda(x)=\log p$ if $x=p^{k}$ with a prime number p and an integer $k \geq 1,=0$ otherwise, we put

$$
L i_{2}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}
$$

and G is either the minimum integer $n(\geq 1)$ such that $e^{n \alpha}$ is a prime power, or $1 / \alpha$ if such n does not exist.

It is clear from the proof of Theorem 4 that the same conclusion holds for α of the form $\beta_{0}+\sum_{j=1}^{M} \beta_{j} \log \alpha_{j}$ with non-zero algebraic numbers $\alpha_{j}, j=$ $1,2,3, \cdots, M$ and algebraic numbers $\beta_{j}, j=0,1,2, \cdots, M$. Other cases for α are included in the following general theorem.

Theorem 5 (Under R. H.). For any positive α and $T>T_{0}$, we have

$$
\frac{1}{N(T)} \sum_{r \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}^{2}-\left\{\alpha \frac{\gamma}{2 \pi}\right\}+\frac{1}{6}\right) \ll \frac{1}{\log T} .
$$

As we know, $\{x\}-1 / 2=B_{1}(\{x\})$ and $\{x\}^{2}-\{x\}+1 / 6=B_{2}(\{x\})$, with the Bernoulli polynomials B_{1} and B_{2}. Similarly, we can evaluate the sums

$$
\sum_{r \leq T} B_{n}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}\right)
$$

for $n \geq 3$.
§ 2. Proof of Theorem 1. Let \boldsymbol{H} be a sufficiently large number which well be chosen later. We decompose our sum as follows.

$$
\begin{aligned}
S & \equiv \sum_{\gamma \leq T}\left(\left\{\alpha-\frac{\gamma}{2 \pi}\right\}-\frac{1}{2}\right) \\
& =\sum_{\substack{r<T \\
1 / H \leq \mid \alpha(\gamma / 2 \pi)\} \leq 1-1 / H}}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}-\frac{1}{2}\right)+\sum_{\substack{r \leq T, 0 \leq \mid \alpha(\gamma / 2 \pi)]<1 / H \\
1-1 / H<\{\alpha(\gamma / 2 \pi) \mid<1}}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}-\frac{1}{2}\right) \\
& =S_{1}+S_{2}, \quad \text { say. }
\end{aligned}
$$

To estimate S_{2}, we shall use the following lemma which gives a discrepancy estimate of the uniform distribution of $\alpha(\gamma / 2 \pi)$.

Lemma 1. For any $\alpha>0$, any positive ε and for $T>T_{0}$, we have

$$
\frac{1}{N(T)}\left|\left\{\gamma \leq T ; 0 \leq\left\{\alpha \frac{\gamma}{2 \pi}\right\} \leq \beta\right\}\right|=\beta+O\left(\frac{1}{(\log T)^{1-\varepsilon}}\right)
$$

uniformly for β in $0 \leq \beta \leq 1$.
This is proved in Fujii [2].
Applying this we get

$$
S_{2} \lll \sum_{0 \leq\{(\gamma \backslash T / 2 \pi)\}<1 / H} \cdot 1+\sum_{1-1 / H<\{\langle\alpha(\gamma / 2 \pi)\}<1} \cdot 1 \ll \frac{1}{H} N(T)+N(T)(\log T)^{-1+\varepsilon} .
$$

For S_{1}, we notice first that if $\alpha(\gamma / 2 \pi)$ is not an integer,

$$
\left\{\alpha \frac{\gamma}{2 \pi}\right\}-\frac{1}{2}=-\sum_{1 \leq k \leq H} \frac{1}{k \pi} \sin (k \alpha \gamma)+O\left(\frac{1}{H\|\alpha(\gamma / 2 \pi)\|}\right),
$$

where $\|x\|$ denotes the distance of x from a nearest integer.
Using this expression, we get

$$
\begin{aligned}
& S_{1}=-\sum_{1 \leq k \leq H} \frac{1}{k \pi} \sum_{\substack{\gamma \gamma T \\
1 / H \leq \alpha(\gamma / 2 \pi)\} \leq 1-1 / H}} \sin (k \alpha \gamma)+O\left(\frac{1}{H} \sum_{\substack{\gamma \leq T \\
1 / H \leq\{\alpha(\gamma / 2 \pi)\} \leq 1-1 / H}} \frac{1}{\|\alpha(\gamma / 2 \pi)\|}\right) \\
& =S_{3}+S_{4} \text {, say } \\
& S_{4} \ll \frac{1}{H} \sum_{\substack{\gamma \leq T \\
1 / H \leq\{\alpha(\gamma / \pi)\} \leq 1 / 2}} \frac{1}{\{\alpha(\gamma / 2 \pi)\}}+\frac{1}{H} \sum_{\substack{\gamma\langle T \\
1 / 2<\{\alpha(\gamma / 2 \pi)\} \leq 1-1 / H}} \frac{1}{1-\{\alpha(\gamma / 2 \pi)\}} \\
& \ll \frac{1}{H} \sum_{1 \leq m \leq H / 2} \sum_{m / H \leq|\alpha(\gamma / 2 \pi)|<(m+1) / H} \frac{1}{\{\alpha(\gamma / 2 \pi)\}} \\
& +\frac{1}{H} \sum_{1 \leq m \leq H / 2} \sum_{m / H \leq 1-\{\alpha(\gamma / 2 \pi)\}<(m+1) / H} \frac{1}{1-\{\alpha(\gamma / 2 \pi)\}} \\
& \ll \sum_{1 \leq m \leq H / 2} \frac{1}{m} \sum_{m / H \leq\{\alpha(\gamma / 2 \pi T)\}<(m+1) / H} \cdot 1+\sum_{1 \leq m \leq H / 2} \frac{1}{m} \sum_{1-(m+1) / H<\{\langle\alpha(\gamma / 2 \pi)\} \leq 1-m / H} \cdot 1 .
\end{aligned}
$$

Using Lemma 1 again, this is

$$
\ll \log H\left(\frac{N(T)}{H}+N(T)(\log T)^{-1+\varepsilon}\right) .
$$

We turn to estimate S_{3}.

$$
\begin{aligned}
S_{3} & =-\sum_{1 \leq k \leq H} \frac{1}{k \pi} \sum_{r \leq T} \sin (k \alpha \gamma)+\sum_{1 \leq k \leq H} \frac{1}{\sum_{k \pi}} \sum_{\substack{r \leq T, 0 \leq 1(\alpha) / 2 \pi)\}<1 / H \\
1-1 / H<\{(\alpha) \gamma / 2 n)\}<1}} \sin (k \alpha \gamma) \\
& =S_{5}+S_{6}, \quad \text { say. }
\end{aligned}
$$

Using Lemma 1 , we get as before

$$
S_{6} \ll \log H\left(\frac{N(T)}{H}+N(T)(\log T)^{-1+\varepsilon}\right) .
$$

Finally, we shall estimate S_{5}. For this purpose we shall use the following lemma which has been proved in [3].

Lemma 2. For $1<X \ll T^{8 / 7-\varepsilon}, \varepsilon>0$ and $T>T_{0}$,

$$
\sum_{r \leq T} X^{i r} \ll T \log X+\operatorname{Min}\left(\frac{\log T}{\log X}, \log T\right) .
$$

Using this we get

$$
S_{5} \ll \sum_{1 \leq k \leq H} \frac{1}{k}\left(T k+\operatorname{Min}\left(\frac{\log T}{k}, T \log T\right)\right) \ll T H
$$

Consequently, we get

$$
S \ll \log H\left(\frac{N(T)}{H}+N(T)(\log T)^{-1+\varepsilon}\right)+T H
$$

Choosing $H=\sqrt{\log T \log \log T}$, we get

$$
\frac{S}{N(T)} \ll \sqrt{\frac{\log \log T}{\log T}}
$$

§ 3. Proof of Theorem 2. If we assume R. H., then we can use an improvement of Lemma 2 in the following form (cf. Fujii [3] for a more precise result).

Lemma 3 (Under R. H.). For $X>1$ and $T>T_{0}$, we have

$$
\begin{aligned}
\sum_{r \leq T} X^{i \gamma}= & -\frac{T}{2 \pi} \frac{\Lambda(X)}{\sqrt{X}}+O\left(\frac{\log T}{\log X}+\sqrt{X} \log X \frac{\log T}{(\log \log T)^{2}}\right. \\
& \left.+\sqrt{X} \log (3 X) \log \log (3 X)+\frac{\log (2 X)}{\sqrt{X}} \operatorname{Min}\left(T, \frac{1}{|\log X / P(X)|}\right)\right)
\end{aligned}
$$

where $P(X)$ is the nearest prime power other than X itself.
If we apply this, then S_{5} in the previous section is

$$
\ll \sum_{1 \leq k \leq H} \frac{1}{k}\left(\frac{\log T}{k}+e^{k_{\alpha / 2}} k \log (3 k)+e^{k_{\alpha / 2}} k \frac{\log T}{(\log \log T)^{2}}+\frac{k}{\left.e^{k_{\alpha / 2}} T\right) . . ~ . ~}\right.
$$

Here we choose $H=C \log T$ with a sufficiently small positive C. Then this is

$$
\ll T
$$

Consequently, we get

$$
\begin{aligned}
\sum_{r \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}-\frac{1}{2}\right) & \ll \log H\left(\frac{N(T)}{H}+N(T)(\log T)^{-1+\varepsilon}\right)+T \\
& \ll N(T)(\log T)^{-1+\varepsilon}
\end{aligned}
$$

§4. Proof of Theorems 3, 4 and 5. We shall prove Theorems 4 and 5 first. By the Fourier expansion of $\{x\}^{2}-\{x\}+1 / 6$, we get

$$
\begin{aligned}
& \sum_{r \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}^{2}-\left\{\alpha \frac{\gamma}{2 \pi}\right\}+\frac{1}{6}\right) \\
&=\sum_{r \leq T} \sum_{1 \leq n \leq H} \frac{1}{\pi^{2} n^{2}} \cos (n \alpha \gamma)+O\left(\frac{1}{H} \sum_{r \leq T} \operatorname{Min}\left(1, \frac{1}{H\|\alpha(\gamma / 2 \pi)\|}\right)\right) \\
&=U_{1}+U_{2}, \quad \text { say }
\end{aligned}
$$

where we suppose that $1 \ll H \leq C \log T$ with a sufficiently small positive number C.

Using Lemma 1 as in the previous section, we get

$$
\begin{aligned}
& U_{2} \ll \frac{1}{H} \sum_{\substack{r \leq T, 0 \leq 1 \\
1-1 / H(\alpha) / 2 \pi)\}<1 / H \\
1}} \cdot 1+\frac{1}{H^{2}} \sum_{1 \leq m \leq H / 2 \pi)<1} \sum_{m / H \leq\{\alpha(\gamma / 2 \pi T)\}<(m+1) / H} \frac{1}{\{\alpha(\gamma / 2 \pi)\}} \\
& +\frac{1}{H^{2}} \sum_{1 \leq m \leq H / 2} \sum_{m / H \leq 1-\{\alpha(\gamma / 2 \pi)\}<(m+1) / H} \frac{1}{1-\{\alpha(\gamma / 2 \pi)\}} \\
& \ll \log H\left(\frac{N(T)}{H^{2}}+N(T) \frac{(\log T)^{-1+3}}{H}\right) .
\end{aligned}
$$

Using Lemma 3, we get

$$
\begin{aligned}
U_{1}= & \sum_{1 \leq n \leq H} \frac{1}{\pi^{2} n^{2}} \sum_{r \leq T} \cos (n \alpha \gamma) \\
= & \sum_{1 \leq n \leq H} \frac{1}{\pi^{2} n^{2}}\left(-\frac{T}{2 \pi} \frac{\Lambda\left(e^{n \alpha}\right)}{\sqrt{e^{n \alpha}}}+O\left(\frac{\log T}{n}\right)+O\left(e^{n \alpha} n \frac{\log T}{(\log \log T)^{2}}\right)\right. \\
& \left.+O\left(e^{n \alpha / 2} n \log (3 n)\right)+O\left(\frac{n}{e^{n \alpha / 2}} \operatorname{Min}\left(T, \frac{1}{\left|\log e^{n \alpha} /\left(P\left(e^{n \alpha}\right)\right)\right|}\right)\right)\right) \\
= & -\frac{T}{2 \pi^{3}} \sum_{n=1}^{\infty} \frac{\Lambda\left(e^{n \alpha}\right)}{n^{2} e^{n \alpha / 2}}+O\left(T^{\varepsilon}\right)+O\left(\sum_{1 \leq n \leq H} \frac{1}{n e^{n \alpha / 2}} \operatorname{Min}\left(T, \frac{1}{\left|\log e^{n \alpha} /\left(P\left(e^{n \alpha}\right)\right)\right|}\right)\right) .
\end{aligned}
$$

Suppose first that e^{α} is algebraic. Then by the formula of 1.7 in p. 3 of Baker [1], we get for $n \geq 1$ and with some positive constant D depending only on α,

$$
\left|\log \frac{e^{n \alpha}}{P\left(e^{n \alpha}\right)}\right|=\left|n \log e^{\alpha}-\log P\left(e^{n \alpha}\right)\right| \geq e^{-D_{n}}
$$

Consequently, the last remainder term is

$$
<_{1 \leq n \leq H} \frac{e^{D_{n}}}{e^{n \alpha / 2} n} \ll T^{\varepsilon} .
$$

Choosing $H=C \log T$, we get in this case

$$
\sum_{r \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}^{2}-\left\{\alpha \frac{\gamma}{2 \pi}\right\}+\frac{1}{6}\right)=-\frac{T}{2 \pi^{3}} \frac{\Lambda\left(e^{\sigma_{\alpha}}\right)}{G^{2}} L i_{2}\left(e^{-(G / 2) \alpha}\right)+O\left(\frac{T}{(\log T)^{1-\varepsilon}}\right) .
$$

Suppose next that α is algebraic. Then by Theorem in p. 1 of Baker [1], we get for $n \geq 1$ and with some positive constant D^{\prime} depending only on α,

$$
\left|\log \frac{e^{n \alpha}}{P\left(e^{n \alpha}\right)}\right|=\left|n \alpha-\log P\left(e^{n \alpha}\right)\right| \geq e^{-D^{\prime} n \log (3 n)} .
$$

Then, choosing $H=C(\log T) /(\log \log T)$, the last remainder term in U_{1} is seen to be

$$
\ll T^{\varepsilon}
$$

Hence in this case we have also the same evaluation as the first case. Thus Theorem 4 is proved.

Generally, using a trivial estimate

$$
\sum_{1 \leq n \leq H} \frac{1}{n e^{n \alpha / 2}} \operatorname{Min}\left(T, \frac{1}{\left|\log e^{n \alpha} /\left(P\left(e^{n \alpha}\right)\right)\right|}\right) \ll T
$$

we get

$$
\sum_{r \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}^{2}-\left\{\alpha \frac{\gamma}{2 \pi}\right\}+\frac{1}{6}\right) \ll T
$$

This is our Theorem 5 .
To prove Theorem 3, we use the same argument as above with $H=$ $\sqrt{\log T}$ except the treatment of U_{1}. For U_{1}, we use Lemma 2 and get

$$
U_{1} \ll \sum_{1 \leq n \leq H} \frac{1}{n^{2}}\left(T n+\frac{\log T}{n}\right) \ll T \log H
$$

Thus we get

$$
\sum_{r \leq T}\left(\left\{\alpha \frac{\gamma}{2 \pi}\right\}^{2}-\left\{\alpha \frac{\gamma}{2 \pi}\right\}+\frac{1}{6}\right) \ll T \log H+\left(\frac{T \log T}{H^{2}}+\frac{T \log T}{H(\log T)^{1-\varepsilon}}\right) \log H
$$ $\ll T \log \log T$.

This is our Theorem 3.
§ 5. Concluding remarks. The present method can be applied to estimate the sum

$$
\sum_{p \leq X}\left(\{\alpha p\}-\frac{1}{2}\right)
$$

where p runs over the prime numbers. The corresponding lemmas are supplied by Vaughan in Theorems 1 and 2 of [10].

References

[1] A. Baker: A central theorem in transcendence theorem. Diophantine Approximation and Its Applications. Academic Press, pp. 1-23 (1973).
[2] A. Fujii: On the zeros of Dirichlet L-functions. III. Trans. A.M.S., 219, 347349 (1976).
[3] --: On a theorem of Landau. II. Proc. Japan Acad., 66A, 291-296 (1990).
[4] -: Some problems of Diophantine approximation and a Kronecker's limit formula. Advanced St. in Pure Math., 13, 215-236 (1988).
[5] --: Diophantine approximation, Kronecker's limit formula and the Riemann hypothesis. Proc. of Int. Number Th. Conf., W. de Gruyter, pp. 240-250 (1989).
[6] G. H. Hardy and J. E. Littlewood: Some problems of Diophantine approximation. Abh. Math. Sem Hamburg, 1, 212-249 (1922).
[7] E. Hecke: Über analytische Funktionen und die Verteilung von Zahlen mod eins. ibid., 1, 54-76 (1921).
[8] A. Ostrowski: Bemerkungen zur theoric Diophantischen Approximationen. ibid., 1, 77-98 (1921).
[9] E.C.Titchmarsh: The Theory of the Riemann Zeta Function (2nd ed. rev. by D. R. Heath-Brown). Oxford Univ. Press, 1951 (1988).
[10] R. C. Vaughan: On the distribution of αp modulo 1. Mathematika, 24, 135-141 (1977).

[^0]: *) The author acknowledges the financial support of SFB170 of Mathematisches Institut, Göttingen, Germany.

