119

29. On the Universality of Baum-Fulton-MacPherson's Riemann-Roch for Singular Varieties

By Shoji Yokura

Department of Mathematics, College of Liberal Arts, University of Kagoshima

(Communicated by Kunihiko KODAIRA, M. J. A., June 9, 1992)

§ 0. Introduction. In [1] Baum, Fulton and MacPherson extended Grothendieck-Riemann-Roch for smooth varieties to singular varieties. Let K_0 be the covariant functor of Grothendieck group of coherent algebraic sheaves and $H_{2*}(; Q)$ be the even part of the usual Q-homology covariant functor. Then they showed the following

BFM-R-R theorem ([1]). There exists a unique natural transformation $Td_*: K_0 \rightarrow H_{2*}(; Q)$ such that ("smooth Todd-condition") $Td_*(\mathcal{O}_X) =$ $td(T_X) \cap [X]$ for any smooth variety X, where \mathcal{O}_X is the structure sheaf of X and $td(T_X)$ is the total Todd class of the tangent bundle T_X of X.

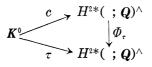
The motivation behind establishing this theorem is the following theorem conjectured by Deligne and Grothendiek and proved affirmatively by MacPherson:

DGM-Chern theorem ([4]). Let \mathcal{F} be the constructible function functor. Then there exists a unique natural transformation $C_*: \mathcal{F} \to H_{2*}(; \mathbb{Z})$ such that ("smooth Chern-condition") $C_*(\mathbf{1}_X) = c(T_X) \cap [X]$ for any smooth variety X, where $\mathbf{1}_X$ is the characteristic function of X and $c(T_X)$ is the total Chern class of the tangent bundle T_X of X.

As to the problem of extending DGM-Chern theorem to other characteristic classes, there is first of all the problem (posed by C.McCrory): Forgetting "smooth Chern-condition", describe all natural transformations from \mathcal{D} to $H_{2*}(; \mathbb{Z})$. To this problem, there is a "naive" conjecture (made by G. Kennedy): Given a natural transformation $\tau: \mathcal{D} \rightarrow H_{2*}(; \mathbb{Z})$, there exists a sequence $\{m_i\}_{i\geq 0}$ of integers m_i 's such that $\tau = \sum_{i\geq 0} m_i C_{*i}$, where C_{*i} is the projection of C_* to the 2i-dimensional component. Kennedy's conjecture is still open, although some partial positive answers have been obtained [6, 8]. In this note we consider Kennedy's conjecture for Baum-Fulton-MacPherson's Riemann-Roch transformation Td_* and show that the conjecture is correct, which becomes another supporting evidence for Kennedy's conjecture.

§ 1. The universality of BFM's Riemann-Roch transformation Td_* . McCrory's problem seems to be hinted by the classical situation that the total Chern class $c: K^0 \rightarrow H^{2*}(; Q)^{\wedge} := 1 + \sum_{i \ge 1} H^{2i}(; Q)$ is universal for the multiplicative characteristic classes of complex vector bundles, where K^0 is the contravariant functor of Grothendieck group of complex vector bundles. To be more precise, for any multiplicative characteristic class $\tau: K^0 \rightarrow$ S. YOKURA

 $H^{2*}(; \mathbf{Q})^{\wedge}$ there exists a unique multiplicative sequence $\{1, M_1(x_1), M_2(x_1, x_2), \dots, M_k(x_1, x_2, \dots, x_k), \dots\}$ such that $\tau = 1 + \sum_{i \ge 1} M_i(c_1, c_2, \dots, c_i)$, which means that c is the universal multiplicative characteristic class in the usual sense that the following diagram commutes:



where Φ_{τ} is defined by $\Phi_{\tau}(1 + \sum_{i \ge 1} x_i) := 1 + \sum_{i \ge 1} M_i(x_1, x_2, \cdots, x_i)$.

Theorem 1 (The universality of BFM's Riemann-Roch transformation Td_*). For a given natural transformation $\tau: K_0 \to H_{2*}(; \mathbf{Q})$, there exists a unique sequence $\{r_i\}_{i\geq 0}$ of rational numbers r_i 's such that $\tau = \sum_{i\geq 0} r_i Td_{*i}$, where Td_{*i} is the projection of Td_* to the 2i-dimensional component. Thus Td_* is universal; $\tau = \Phi_{\tau} \circ Td_*$, where $\Phi_{\tau}: H_{2*}(; \mathbf{Q}) \to H_{2*}(; \mathbf{Q})$ is defined by $\Phi_{\tau}(\sum_{i\geq 0} r_i x_i) = \sum_{i\geq 0} r_i x_i$.

The proof of this theorem turns out to be unexpectedly quite simple, unlike in the case of DGM-Chern transformation C_* , thanks to the following strengthened "uniqueness theorem" of BFM-R-R transformation Td_* :

Uniqueness theorem ([1, Chap. III]). BFM-R-R natural transformation $Td_*: \mathbf{K}_0 \to H_{2*}(; \mathbf{Q})$ is the only natural transformation τ satisfying the property that for any projective space \mathbf{P}^n $(n=0,1,2,\cdots)$ the top-dimensional component of $\tau(\mathcal{O}_{\mathbf{P}^n})$ is equal to $[\mathbf{P}^n]$, i.e.,

 $\tau(\mathcal{O}_{P^n}) = [P^n] + homology classes of lower degrees.$

This theorem follows from the fact that BFM-R-R transformation Td_* induces an isomorphism $K_0(X) \otimes Q \rightarrow H_{2*}(X; Q)$ for any variety X and the following "identity theorem", the proof of which is attributed to A. Landman:

"Identity theorem" ([2, § 5]). If $\alpha: H_{2*}(; Q) \to H_{2*}(; Q)$ is a natural transformation such that for each projective space P^i , $i=0, 1, 2, \cdots$,

 $\alpha([\mathbf{P}^{i}]) = [\mathbf{P}^{i}] + homology \ classes \ of \ lower \ degrees,$

then α must be the identity.

Proof of Theorem 1: Let $\tau: K_0 \to H_{2*}(; Q)$ be a natural transformation and consider all projective spaces P^i , $i=0, 1, 2, \cdots$. Then it is clear that there exists a unique sequence $\{r_i\}_{i\geq 0}$ of rational numbers r_i 's such that $\tau(\mathcal{O}_{P^i}) = r_i[P^i] + \text{homology classes of lower degrees.}$ Then the "linear" form $\sum_{i\geq 0} (1-r_i) Td_{*i}$ is natural and so $\tau' := \tau + \sum_{i\geq 0} (1-r_i) Td_{*i}$ is a natural transformation. Then let us "evaluate" this new natural transformation τ' on each projective space P^i . By the definition of each rational number r_i above, we have $\tau'(\mathcal{O}_{P^i}) = [P^i] + \text{homology classes of lower degrees.}$ Thus by the above BFM's "Uniqueness theorem" we can conclude that $\tau' = Td_*$, which implies that $\tau + \sum_{i\geq 0} (1-r_i) Td_{*i} = Td_*$, i.e., $\tau + \sum_{i\geq 0} Td_{*i} - \sum_{i\geq 0} r_i Td_{*i}$ $= Td_*$. Hence, since $Td_* = \sum_{i\geq 0} Td_{*i}$, we get the conclusion that $\tau = \sum_{i\geq 0} r_i Td_{*i}$.

As corollaries of Theorem 1 and the above proof, we can show the

No. 6]

following

Corollary 2 (A "characterization" of the natural transformation $\sum_{i\geq 0} r_i Td_{*i}$). Let $\{cl^{(n)}\}_{n\geq 0}$ be a sequence of degree-n characteristic classes $cl^{(n)} = \lambda_0^n + \sum_{1\leq i\leq n} P_i^n(c_1, c_2, \dots, c_i)$, where each $P_i^n(c_1, c_2, \dots, c_i)$ is a degree-*i* homogeneous polynomial of individual Chern classes with each c_k being of degree k. Then $\tau: K_0 \rightarrow H_{2*}(; Q)$ is a natural transformation satisfying the "dimension-wise universal smooth characteristic condition" that $\tau(\mathcal{O}_X) = cl^{(\dim X)}(T_X) \cap [X]$ for any smooth X if and only if there exists a sequence $\{r_i\}_{i\geq 0}$ of rational numbers r_i 's such that $cl^{(n)} = \sum_{0\leq i\leq n} r_i td_{n-i}$ and $\tau = \sum_{i\geq 0} r_i Td_{*i}$.

(The proof of this requires also a generalized "linear independence of Chern numbers" saying that if cl is a degree-n polynomial of individual Chern classes and $cl(T_x)=0$ for any compact smooth variety X of dimension n, then cl=0 as a polynomial [9].)

Corollary 3. "Uniqueness theorem" and "Universality" of Td_* are equivalent to each other.

Corollary 4. Any natural (auto) transformation $\tau: H_{2*}(; \mathbf{Q}) \rightarrow H_{2*}(; \mathbf{Q})$ is linear, i.e., given a natural transformation $\tau: H_{2*}(; \mathbf{Q}) \rightarrow H_{2*}(; \mathbf{Q})$, there exists a unique sequence $\{r_i\}_{i\geq 0}$ of rational numbers r_i 's such that $\tau(\sum_{i\geq 0} x_i) = \sum_{i\geq 0} r_i x_i$. Namely, if we let $\pi_i: H_{2*}(; \mathbf{Q}) \rightarrow H_{2i}(; \mathbf{Q})$ be the projection to the 2i-dimensional component, then $\tau = \sum_{i\geq 0} r_i \pi_i$.

Corollary 5. The following three statements are equivalent:

(i) Kennedy's conjecture (with $H_{2*}(; Z)$ being replaced by $H_{2*}(; Q)$) is correct.

(ii) DGM-Chern transformation $C_*: \mathcal{D} \to H_{2*}(; Q)$ is universal.

(iii) DGM-Chern transformation $C_*: \mathcal{D} \to H_{2*}(; \mathbf{Q})$ is the only natural transformation τ satisfying the property that for each projective space \mathbf{P}^i , $i=0,1,2,\cdots$

 $\tau(\mathbf{1}_{P_i}) = [P^i] + homology \ classes \ of \ lower \ degrees.$

§ 2. An extension of BFM-Riemann-Roch transformation Td_* . In [7] we extended DGM-Chern transformation C_* to the Chern polynomial $c_{(q)} := 1 + \sum_{i\geq 1} q^i c_i$, by introducing the "twisted" constructible function functor $\mathcal{F}^{(q)}$, where $\mathcal{F}^{(q)}(X) := \mathcal{F}(X) \otimes_Z Z[q]$ and the pushforward $f_*^{(q)}$ for a morphism f involves some kind of twisting. With this twisted constructible function functor $\mathcal{F}^{(q)}$ we could show that there exists a unique natural transformation $C_{(q)*} : \mathcal{F}^{(q)} \to H_{2*}(; Z) \otimes Z[q]$ such that ("smooth Chern polynomial condition") $C_{(q)*}(\mathbf{1}_X) = c_{(q)}(T_X) \cap [X]$ for any smooth X.

In an analogous manner we can extend BFM-Riemann-Roch transformation Td_* to the Todd polynomial $td_{(q)} := 1 + \sum_{i \ge 1} q^i td_i$. Let $K_0^{(q)}(X) := K_0(X) \otimes \mathbf{Q}[q, q^{-1}]$ and for a morphism $f: X \to Y$ the pushforward $f_*^{(q)}$ is defined by $f_*^{(q)} := q^{\operatorname{reldim}(f)} f_*$, where $\operatorname{reldim}(f) := \dim X - \dim Y$ and f_* is the usual pushforward. Then it is clear that $K_0^{(q)}$ becomes a covariant functor. Let $H_{2*}^{(q)}(; \mathbf{Q}) := H_{2*}(; \mathbf{Q}) \otimes \mathbf{Q}[q, q^{-1}]$. Then we have the following

S. YOKURA

Theorem 6 ([10]). There exists a unique natural transformation $Td_{(q)*}: K_0^{(q)} \rightarrow H_{2*}^{(q)}(; \mathbf{Q})$ such that ("smooth Todd polynomial condition") $Td_{(q)*}(\mathcal{O}_X) = td_{(q)}(T_X) \cap [X]$ for any smooth X. And if we "evaluate" $Td_{(q)*}$ at q = 1, then we get the BFM-R-R transformation $Td_{(1)*} = Td_*$.

References

- P. Baum, W. Fulton and R. MacPherson: Riemann-Roch for singular varieties. Publ. Math. I.H.E.S., 45, 101-145 (1975).
- [2] W. Fulton: Rational equivalence on singular varieties. ibid., 45, 147-167 (1975).
- [3] F. Hirzebruch: Topological Methods in Algebraic Geometry. 3rd ed., Springer-Verlag (1966).
- [4] R. MacPherson: Chern classes for singular algebraic varieties. Ann. of Math., 100, 423-432 (1974).
- [5] J. M. Milnor and J. D. Stasheff: Characteristic Classes. Ann. of Math. Studies, no. 76, Princeton Univ. Press (1974).
- [6] S. Yokura: Some variants of Deligne-Grothendieck-MacPherson's natural transformation C_* of Chern class. Crelles Journal, 419, 199-211 (1991).
- [7] —: An extension of Deligne-Grothendieck-MacPherson's natural transformation C_* of Chern classes for singular algebraic varieties. Publ. RIMS. Kyoto Univ., **27**, no. 5, 745-762 (1991).
- [8] ——: On a generalization of MacPherson's Chern homology class. III. Proc. Japan Acad., 67A, 260-262 (1991).
- [9] —: A note on linear independence of Chern numbers and Pontryagin numbers. Math. Japon, 37, no. 6 (1992).
- [10] ——: An extension of Baum-Fulton-MacPherson's Riemann-Roch for singular varieties (in preparation).