52. A Note on the Irrationality of Certain Infinite Series

By Masao TOYOIZUMI*) and Takeshi OkANO**)
(Communicated by Shokichi Iyanaga, M. J. A., Sept. 14, 1992)

1. Statement of result. Let $\left\{a_{n}\right\}$ be a sequence of positive integers satisfying the next three conditions:
(1) $a_{1} \geqq 2$,
(2) $a_{n+1} \geqq a_{n}$ for all sufficiently large n,
(3) $\lim _{n \rightarrow \infty} a_{n}=\infty$.

We put

$$
\alpha=\sum_{k=1}^{\infty} \frac{1}{A_{k}}
$$

and

$$
\beta=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{A_{k}},
$$

where A_{k} is defined by

$$
A_{k}=\prod_{n=1}^{k} a_{n}
$$

The aim of this note is to prove the following theorem which includes the result of Iséki [1] as a special case.

Theorem. The three numbers $1, \alpha$ and β are linearly independent over the field of rational numbers.

We shall complete the proof of the theorem by using the elementary method which was employed by Siegel [2] to show that e is not a quadratic irrationality.
2. Proof of the theorem. Let n be a sufficiently large integer to ensure the validity of the later argument.

We put $\alpha=\gamma_{n}+\delta_{n}$ and $\beta=\rho_{n}+\sigma_{n}$, where

$$
\begin{aligned}
\gamma_{n} & =\sum_{k=1}^{n} \frac{1}{A_{k}}, \delta_{n}=\sum_{k=n+1}^{\infty} \frac{1}{A_{k}}, \rho_{n}=\sum_{k=1}^{n} \frac{(-1)^{k-1}}{A_{k}} \text { and } \\
\sigma_{n} & =\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{A_{k}} .
\end{aligned}
$$

Further we put $C_{n}=A_{n} \gamma_{n}, D_{n}=A_{n} \delta_{n}, R_{n}=A_{n} \rho_{n}$ and $S_{n}=A_{n} \sigma_{n}$. Then we see that C_{n} and R_{n} are integers and that

$$
0<D_{n}<\frac{1}{a_{n+1}-1} \text { and } 0<(-1)^{n} \mathrm{~S}_{n}<\frac{1}{a_{n+1}-1}
$$

Let p and q denote arbitrary integers, not both 0 .
Put $E_{n}=A_{n}(p \alpha+q \beta)=\left(p C_{n}+q R_{n}\right)+\left(p D_{n}+q S_{n}\right)=T_{n}+U_{n}$, say.
*) Department of Mathematics, Toyo University.
**) Department of Mathematics, Saitama Institute of Technology.

Then it is easy to check that T_{n} is an integer and

$$
\left|U_{n}\right| \leqq\left|p D_{n}\right|+\left|q S_{n}\right| \leqq \frac{|p|+|q|}{a_{n+1}-1}<1
$$

As is easily seen,

$$
a_{n} U_{n-1}-U_{n}=p\left(a_{n} D_{n-1}-D_{n}\right)+q\left(a_{n} S_{n-1}-S_{n}\right)=p+(-1)^{n-1} q
$$

so that at least one of the three numbers U_{n-1}, U_{n} and U_{n+1} is different from 0 , since otherwise $p+q=0, p-q=0$ and $p=q=0$, which is a contradiction. This shows the existence of a positive integer ν such that E_{ν} is not integral. Therefore the number $\frac{E_{\nu}}{A_{\nu}}+r=p \alpha+q \beta+r$ is different from 0 , for all integral r. This means that $p \boldsymbol{\alpha}+q \beta+r \neq 0$ for arbitrary integers p, q and r, not all 0 , which implies our assertion.

References

[1] K. Iséki: On the irrationality of the sum of some infinite series. Math. Sem. Notes Kobe Univ., 7, 183-184 (1979).
[2] C. L. Siegel: Transcendental Numbers. Princeton Univ. Press (1949).

