## 52. A Note on the Irrationality of Certain Infinite Series

By Masao TOYOIZUMI<sup>\*)</sup> and Takeshi OKANO<sup>\*\*)</sup>

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1992)

1. Statement of result. Let  $\{a_n\}$  be a sequence of positive integers satisfying the next three conditions:

(1) a<sub>1</sub> ≥ 2,
(2) a<sub>n+1</sub> ≥ a<sub>n</sub> for all sufficiently large n,
(3) lim<sub>n→∞</sub> a<sub>n</sub> = ∞.
We put

$$\alpha = \sum_{k=1}^{\infty} \frac{1}{A_k}$$

and

$$\beta = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{A_k}$$

where  $A_k$  is defined by

$$A_k = \prod_{n=1}^k a_n.$$

The aim of this note is to prove the following theorem which includes the result of Iséki [1] as a special case.

**Theorem.** The three numbers 1,  $\alpha$  and  $\beta$  are linearly independent over the field of rational numbers.

We shall complete the proof of the theorem by using the elementary method which was employed by Siegel [2] to show that e is not a quadratic irrationality.

2. Proof of the theorem. Let n be a sufficiently large integer to ensure the validity of the later argument.

We put  $\alpha = \gamma_n + \delta_n$  and  $\beta = \rho_n + \sigma_n$ , where

$$\gamma_n = \sum_{k=1}^n \frac{1}{A_k}, \ \delta_n = \sum_{k=n+1}^\infty \frac{1}{A_k}, \ \rho_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{A_k}$$
 and  
 $\sigma_n = \sum_{k=n+1}^\infty \frac{(-1)^{k-1}}{A_k}.$ 

Further we put  $C_n = A_n \gamma_n$ ,  $D_n = A_n \delta_n$ ,  $R_n = A_n \rho_n$  and  $S_n = A_n \sigma_n$ . Then we see that  $C_n$  and  $R_n$  are integers and that

$$0 < D_n < \frac{1}{a_{n+1}-1}$$
 and  $0 < (-1)^n S_n < \frac{1}{a_{n+1}-1}$ 

Let p and q denote arbitrary integers, not both 0.

Put 
$$E_n = A_n(p\alpha + q\beta) = (pC_n + qR_n) + (pD_n + qS_n) = T_n + U_n$$
, say.

\*) Department of Mathematics, Toyo University.

<sup>\*\*)</sup> Department of Mathematics, Saitama Institute of Technology.

Then it is easy to check that  $T_n$  is an integer and

$$|U_n| \leq |pD_n| + |qS_n| \leq \frac{|p| + |q|}{a_{n+1} - 1} < 1.$$

As is easily seen,

 $a_n U_{n-1} - U_n = p(a_n D_{n-1} - D_n) + q(a_n S_{n-1} - S_n) = p + (-1)^{n-1}q$ , so that at least one of the three numbers  $U_{n-1}$ ,  $U_n$  and  $U_{n+1}$  is different from 0, since otherwise p + q = 0, p - q = 0 and p = q = 0, which is a contradiction. This shows the existence of a positive integer  $\nu$  such that  $E_{\nu}$  is not integral. Therefore the number  $\frac{E_{\nu}}{A_{\nu}} + r = p\alpha + q\beta + r$  is different from 0, for all integral r. This means that  $p\alpha + q\beta + r \neq 0$  for arbitrary integers p, q and r, not all 0, which implies our assertion.

## References

- K. Iséki: On the irrationality of the sum of some infinite series. Math. Sem. Notes Kobe Univ., 7, 183-184 (1979).
- [2] C. L. Siegel: Transcendental Numbers. Princeton Univ. Press (1949).

No. 7]