# 51. Description of Sequences Defined by Billiards in the Cube 

By Iekata Shiokawa*) and Jun-ichi TAmURA**)<br>(Communicated by Shokichi IyAnAGA, M. J. A., Sept. 14, 1992)

§ 1. Introduction. We consider billiards in the cube $I^{3}, I=[0,1]$, whose faces $\{\delta\} \times I \times I, I \times\{\delta\} \times I$, and $I \times I \times\{\delta\}$ are labelled by $a, b$, and $c$, resp., where $\delta=0$ or 1 and $A \times B \times C=\{(x, y, z) \mid x \in A, y \in$ $B, z \in C\}$. Let a particle start at a point $P \in F$ with constant velocity along a vector $v=(1, \alpha, \beta)$ and reflected at each face specularly, where $F=\{0\}$ $\times I^{\prime} \times I^{\prime} \cup I^{\prime} \times\{0\} \times I^{\prime} \cup I^{\prime} \times I^{\prime} \times\{0\}, I^{\prime}=[0,1)$. We assume that
(A) $\alpha, \beta, \beta / \alpha$ are irrational with $1>\alpha>\beta>0$, and
(B) the (forward) path of the particle never touch the edges of the cube.
$A$ point $P \in F$ of the property (B) will be called lattice-free w.r.t, a given $v$. If we write down the labels $a, b$, and $c$ of the faces which the particle hits in order of collision, we have an infinite sequence, or word,

$$
w=w(v, P)=w(v, P ; a, b, c) \in\{a, b, c\}^{N}
$$

In [1] the authors jointly with P. Arnoux and C. Mauduit proved the following theorem conjectured by G. Ranzy: If $1, \alpha, \beta$ are linearly independent over $Q$ and if $P \in F$ is lattice-free w. r. t. $v$, then the complexity $p(n ; w)$ of the word $w=w(v, P)$ is given by

$$
p(n ; w)=n^{2}+n+1 \quad(n \geq 1)
$$

where $p(n ; w)$ is, by definition, the number of distinct subwords of $w$ of length $n$. The purpose of this note is to give an algorithm describing the word $w$ in terms of the partial quotients of the simple continued fractions of $\alpha, \beta$, and $\beta / \alpha$ and the digits appearing in certain expansions, defined by (4) below, of the coordinates of the point $P$.

By symmetry with respect to the faces, the word $w$ remains unchanged, if we replace the cube by the three dimensional torus $\boldsymbol{R}^{3} / \boldsymbol{Z}^{3}$ and imagine that the particle does not reflect at the faces but passes through them. If we attach the symbols $a, b$, and $c$ to the intersection points of the half-line $l=$ $\{t v+P \mid t>0\}$ to the planes $x=k \in \boldsymbol{N}, y=m \in \boldsymbol{N}$, and $z=n \in \boldsymbol{N}$, resp., and trace them along $l$, we obtain the word $w(v, P)$ defined above. We remark that a point $P=(\xi, \eta, \zeta) \in F$ is lattice-free w.r.t. $v=(1, \alpha, \beta)$ if and only if

$$
\begin{equation*}
k \theta_{i}+\phi_{i} \notin \boldsymbol{Z} \text { for all } k \in \boldsymbol{N}(i=1,2,3) \tag{1}
\end{equation*}
$$

where
(2) $\theta_{1}=\alpha, \phi_{1}=\eta-\alpha \xi, \theta_{2}=\beta, \phi_{2}=\xi-\beta \xi, \theta_{3}=\frac{\beta}{\alpha}, \phi_{3}=\xi-\frac{\beta}{\alpha} \eta$,
and that almost all points $P \in F$ in the sense of Lebesgue Measure are lattice-free w.r.t. a given vector $v$.
*) Department of Mathematics, Keio University.
Faculty of General Education, International Junior College.
§ 2. The sequence $\{[(k+1) \theta+\phi]-[k \theta+\phi]\}_{k \geq 1}$. One of the algorithm writing down the sequence in the title of this section was given by the authors and K. Nishioka [2], which will be used to describe the word $w=w(v, P)$ defined in the previous section. Here $[x]$ denotes the greatest integer not exceeding a real number $x$. We remark that if $\phi=0$ the result (see Theorem A. (i) below) is classical (cf. [3]).

Let $\theta=\left[a_{0} ; a_{1}, a_{2}, \cdots\right]$ denote the simple continued fraction of $\theta$, where $\theta=a_{0}+\theta_{0}, a_{0}=[\theta]$, and $1 / \theta_{n-1}=a_{n}+\theta_{n}, a_{n}=\left[1 / \theta_{n-1}\right](n \geq 1)$. We expand $\phi$ in terms of the sequence $\left\{\theta_{n}\right\}_{n \geq 0}$. Put $\phi=b_{0}-\phi_{0}, b_{0}=-[-$ $\phi]$, and define

$$
\begin{equation*}
\phi_{n-1} / \theta_{n-1}=b_{n}-\phi_{n}, b_{n}=-\left[-\phi_{n-1} / \theta_{n-1}\right](n \geq 1) \tag{3}
\end{equation*}
$$

Then $\phi$ can be expanded in the series

$$
\begin{equation*}
\phi=b_{0}+\sum_{n=1}^{\infty}(-1)^{n} \theta_{0} \theta_{1} \cdots \theta_{n-1} b_{n}=b_{0} . b_{1} b_{2} \cdots \tag{4}
\end{equation*}
$$

By definition, $0 \leq \phi_{n}<1(n \geq 0)$ and $b_{n} \in \boldsymbol{Z}$ with $0 \leq b_{n} \leq a_{n}+1$ ( $n \geq 1$ ). The series terminates if and only if $b_{n+1}=0$ for some $n \geq 0$; and if so $b_{n}=0$ for all $n \geq N=\min \left\{\nu \geq 1 \mid b_{\nu}=0\right\}$. Otherwise, $b_{n} \geq 1$ for all $n \geq 1$.

Theorem $\boldsymbol{A}([2])$. Let $\theta$ be irrational with $0<\theta<1$ and $\phi$ be real.
(i) If $\phi$ is an integer, we have
$\{[(k+1) \theta+\phi]-[k \theta+\phi]\}_{k \geq 1}=\{[(k+1) \theta]-[k \theta]\}_{k \geq 1}=\lim _{n \rightarrow \infty} w_{n}$,
where $w_{n}$ is given by

$$
w_{0}=0, w_{1}=\underbrace{0 \cdots 0}_{a_{1}-1 \text { times }} 1, w_{n}=\underbrace{w_{n-1} \cdots w_{n-1}}_{a_{n} \text { times }} w_{n-2} \quad(n \geq 2)
$$

(ii) If $\phi$ is not an integer and if

$$
k \theta+\phi \notin \boldsymbol{Z} \text { for all } k \in \boldsymbol{N},
$$

we have

$$
\{[(k+1) \theta+\phi]-[k \theta+\phi]\}_{k \geq 1}=\lim _{n \rightarrow \infty} u_{n} v_{n}
$$

where $u_{n}$ and $v_{n}$ are defined by

$$
\begin{gathered}
v_{0}=0, u_{1}=\underbrace{0 \cdots 0,}_{b_{1} \text { times }} v_{1}=\underbrace{0 \cdots 0}_{a_{1}-1 \text { times }} 1, \\
u_{n}=u_{n-1} \underbrace{v_{n-1} \cdots v_{n-1}}_{b_{n} \text { times }}, v_{n}=\underbrace{v_{n-2}}_{a_{n-1} \cdots v_{n-1}} v_{n-2} \quad(n \geq 2),
\end{gathered}
$$

and $\lim _{n \rightarrow \infty} x_{n}$ denotes the infinite word having $x_{n}$ as a prefix for all $n$.
Remark. If $k_{0} \theta+\phi=m_{0}$ for some integers $k_{0} \geq 1$ and $m_{0}$, we have $[(k+1) \theta+\phi]-[k \theta+\phi]=\left[\left(k-k_{0}+1\right) \theta\right]-\left[\left(k-k_{0}\right) \theta\right]$, so that this case can be reduced to Case (i).

Theorem A has a natural interpretation into the language of substitutions.

Theorem $\mathbf{A}^{\prime}$ ([2]). Let $\theta$ be irrational with $0<\theta<1$ and $\phi$ be real.
(i) We have

$$
\{[(k+1) \theta]-[k \theta]\}_{k \geq 1}=\lim _{n \rightarrow \infty} \sigma_{a_{1-1}} \circ \sigma_{a_{2}} \circ \cdots \circ \sigma_{a_{n}}(0),
$$

where $\sigma_{i}$ is the substitution over $\{0,1\}$ defined by

$$
\sigma_{i}(0)=\underbrace{0 \cdots 0}_{i \text { times }} 1, \sigma_{i}(1)=0,
$$

and the product $\sigma \circ \tau$ of two substitution $\sigma$ and $\tau$ is defined by $\sigma \circ \tau(u)$ $=\sigma(\tau(u)), u \in\{0,1\} . *(\{a, b, \ldots, d\} *$ denotes the set of all finite words on $a, b, \ldots, d$ including the empty word.)
(ii) If $\phi \notin \boldsymbol{Z}$ satisfies (5), we have
$\{[(k+1) \theta+\phi]-[k \theta+\phi]\}_{k \geq 1}=\lim \sigma_{a_{1-1} b_{1}} \circ \sigma_{a_{2} b_{2}} \circ \cdots \circ \sigma_{a_{n} b_{n}}(\varepsilon)$, where the left-hand side is the infinite word ${ }^{n}{ }_{o}^{\infty} f 0$ and 1 prefixed by an auxiliary symbol $\varepsilon$, and $\sigma_{i j}$ is the substitution over $\{\varepsilon, 0,1\}$ defined by $\sigma_{i j}(\varepsilon)=\underbrace{\varepsilon 0 \cdots 0}_{j \text { times }}$,
$\sigma_{i j}(0)=0 \cdots 01, \sigma(1)=0$. $\sigma_{i j}(0)=\underbrace{0 \cdots 0}_{i \text { times }} 1, \sigma(1)=0$.
§ 3. Words defined by billiards on the square. In this section, we consider billiards on the square $I^{2}$ whose sides $\{\delta\} \times I$ and $I \times\{\delta\}$ are labelled by $a$ and $b$, resp., where $\delta=0$ or 1 . Let a particle start at a point $P \in[0$, $1)^{2}$ with constant velocity along a vector $v=(1, \theta)$ and reflected at each side specularly. We assume that
(A') $\theta$ is irrational with $0<\theta<1$, and
( $\mathrm{B}^{\prime}$ ) the (forward) path of the particle never touch the corners of the square. A point $P \in[0,1)^{2}$ of the property ( $B^{\prime}$ ) will be called lattice-free w.r.t. $\theta$. Writing down the labels $a$ and $b$ of the sides which the particle hits in order of collision, we have an infinite word

$$
\begin{equation*}
w=w(\theta, P)=w(\theta, P ; a, b) \tag{6}
\end{equation*}
$$

The word $w(\theta, P)$ remains unchanged, if we replace the sequence by the torus and imagine that the particle does not reflect at the sides but passes through them. If we attach the symbols $a$ and $b$ to the intersection points of the half-line $y=\theta x+\phi(x>0, \theta=\eta-\theta \xi)$ with the lines $x=k \in \boldsymbol{N}$ and $y=m \in \boldsymbol{N}$, resp., and trace them along the half-line, we obtain the word $w(\theta, P)$ defined above. We remark that, if $P=(\xi, \eta) \in[0,1)^{2},-\theta$ $<\phi=\eta-\theta \xi<1$. Thus we have the following

Lemma 1. Let $P \in[0,1)^{2}$ be lattice-free w.r.t. a given irrational $\theta$ with 0 $<\theta<1$. Then we have

$$
w(\theta, P)=m_{0} m_{1} m_{2} \cdots,
$$

where

$$
\begin{gathered}
m_{0}= \begin{cases}\lambda & \text { if }-\theta<\phi<1-\theta \\
b & \text { if } 1-\theta<\phi<1\end{cases} \\
m_{k}= \begin{cases}a & \text { if }[(k+1) \theta+\phi]-[k \theta+\phi]=0 \\
a b & \text { if }[(k+1) \theta+\phi]-[k \theta+\phi]=1\end{cases}
\end{gathered}
$$

and $\phi=\eta-\theta \xi$, wher $\lambda$ is the empty word.
We remark that a point $P \in[0,1)^{2}$ is lattice-free w.r.t. $v=(1, \theta)$ if and only if (5) holds with $\phi=\eta-\theta \xi$, and that all the points $P \in\{0\}$ $\times[0,1) \cup[0,1) \times\{0\}$, except countable many ones, are lattice-free w.r.t. a given irrational $\theta$ with $0<\theta<1$.
$\S 4$. An algorithm describing the words $w(v, P)$. For any $x \in\{a, b, c\}$ and any word $w$ over $\{a, b, c\}$, let $\tau_{x}(w)$ denote the word obtained by re-
moving $x$ from $w$. We note that $\tau_{x}(u v)=\tau_{x}(u) \tau_{x}(v)$ for any $u, v \in\{a, b$, $c\}^{*}$. Then by projecting the billiards in $\boldsymbol{R}^{3}$ along $z, y$, and $x$-axis, we have the following

Lemma 2. Let $P=(\xi, \eta, \zeta) \in[0,1)^{3}$ be lattice-free w.r.t. a given $v=(1, \alpha, \beta)$ satisfying (A) and let $w=w(v, P ; a, b, c)$ be the word defined in section one. Then we have

$$
\begin{aligned}
& \tau_{c}(w)=w(\alpha,(\xi, \eta) ; a, b) \\
& \tau_{b}(w)=w(\beta,(\xi, \zeta) ; a, c), \\
& \tau_{a}(w)=w(\beta / \alpha,(\eta, \zeta) ; b, c),
\end{aligned}
$$

where for instance the right-hand side of the last equality is the word defined by (6) with $\theta=\beta / \alpha, P=(\eta, \zeta)$, and $b, c$ in place of $a, b$.

For any word $m=m_{1} m_{2} \cdots m_{\ell}$ with $m_{i} \in\{a, b, c\}(1 \leq i \leq \ell)$, let $|m|$ denote the length $\ell$ of $m$; in particular, $|\lambda|=0$. Now we state our theorem.

Theorem. Let $w=w(v, P)$ be the word defined by a lattice-free point $P \in[0,1)^{3}$ w.r.t. a given $v$ satisfying (A). Then $w$ can be written by the following algorithm:
Step 1. Expand $\theta_{i}$ and $\phi_{i}(i=1,2,3)$ defined by (2) in the simple continued fractions

$$
\theta_{i}=\left[0 ; a_{1}^{(i)}, a_{2}^{(i)}, \cdots\right]
$$

and then in the series (4)

$$
\phi_{i}=b_{0}^{(i)}, b_{1}^{(i)} b_{2}^{(i)} \cdots
$$

Step 2. Write down the sequences

$$
\begin{equation*}
\left\{\left[(k+1) \theta_{i}+\phi_{i}\right]-\left[k \theta_{i}+\phi_{i}\right]\right\}_{k \geq 1} \quad(i=1,2,3) \tag{7}
\end{equation*}
$$

as the word of 0 and 1 , using Theorem A .
Step 3. Write the words $\tau_{c}(w), \tau_{b}(w), \tau_{a}(w)$ by Lemma 1 with (7) as

$$
\begin{aligned}
& \tau_{c}(w)=s_{0} s_{1} s_{2} \cdots, s_{0} \in\{\lambda, b\}, s_{n} \in\{a, a b\}(n \geq 1) \\
& \tau_{b}(w)=t_{0} t_{1} t_{2} \cdots, t_{0} \in\{\lambda, c\}, t_{n} \in\{a, a c\}(n \geq 1) \\
& \tau_{a}(w)=u_{0} u_{1} u_{2} \cdots, u_{0} \in\{\lambda, c\}, u_{n} \in\{b, b c\}(n \geq 1) .
\end{aligned}
$$

Step 4. Rewrite $\tau_{a}(w)$ in the form

$$
\tau_{a}(w)=v_{0} v_{1} v_{2} \cdots, v_{n} \in\{\lambda, b, c, b c, c b\},(n \geq 1)
$$

where

$$
\left|v_{0}\right|=\left|s_{0}\right|+\left|t_{0}\right|,\left|v_{n}\right|=\left|s_{n}\right|+\left|t_{n}\right|-2(n \geq 1)
$$

Step 5. Put $w_{0}=v_{0}, w_{n}=a v_{n}(n \geq 1)$. Then the word $w$ is given by

$$
w=w_{0} w_{1} w_{2} \cdots
$$

Proof of Theorem. We have only to verify the last step. By Lemma 2, we see that $s_{n}=\tau_{c}\left(w_{n}\right), t_{n}=\tau_{b}\left(w_{n}\right)$, and $v_{n}=\tau_{a}\left(w_{n}\right)(n \geq 0)$. Therefore $w_{n}$ ( $n \geq 1$ ) are determined as in the following;

| $a_{n}$ | $t_{n}$ | $v_{n}$ | $w_{n}$ |
| :---: | :---: | :---: | :---: |
| $a$ | $a$ | $\lambda$ | $a$ |
| $a b$ | $a$ | $b$ | $a b$ |
| $a$ | $a c$ | $c$ | $a c$ |
| $a b$ | $a c$ | $b c$ | $a b c$ |
| $a b$ | $a c$ | $c b$ | $a c b$ |

## References

[1] P. Arnoux et al.: Complexity of sequences defined by billiards in the cube. Prépubl. Math. Univ. Paris, VII, ${ }^{\circ} 17$ (1992).
[2] K. Nishioka, I. Shiokawa, and J. Tamura: Arithmetical properties of certain power series. J. Number Theory, 42, 61-87(1992).
[3] K. B. Stolarsky: Beatty sequences, continued fractions, and certain shift operators. Canad. Math. Bull., 19, 473-482 (1976).

