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Description of Sequences Defined by Billiards
in the Cube

By Iekata SHIOKAWA *) and Jun-ichi TAMURA**)

(Communicated by Shokichi IYANAGA, M.J.A., Sept. 14, 1992)

1. Introduction. We consider billiards in the cube I a, I [0, 1],
whose faces {c3} I I, I {6} I, and I I {c3} are labelled by a, b,
and c, resp., where =0 or 1 and A B C= {(x, g, z) IxA, g
B, z C}. Let a particle start at a point P F with constant velocity along
a vector v (1, or, /3) and reflected at each face specularly, where F {0}

I’ I’ (3 I’ {0} I’ U I’ I’ {0}, I’.= [0, 1). We assume that
(A) or, fl,//c are irrational with 1 > cr > fl > O, and
(B) the (forward) path of the particle never touch the edges of the cube.
A point P F of the property (B) will be called lattice-free w.r.t, a given v.
If we write down the labels a, b, and c of the faces which the particle hits in
order of collision, we have an infinite sequence, or word,

w w(v, P) w(v, P;a, b, c) {a, b, c}N.
In [1] the authors jointly with P. Arnoux and C. Mauduit proved the fol-

lowing theorem conjectured by G. Ranzy" If 1, or, /3 are linearly indepen-
dent over O and if P F is lattice-free w. r. t. v, then the complexity
p(n w) of the word w w(v, P) is given by

p(n w) n2 + n + 1 (n >_ 1),
where p(n;w) is, by definition, the number of distinct subwords of w of
length n. The purpose of this note is to give an algorithm describing the
word w in terms of the partial quotients of the simple continued fractions of
or, /3, and fl/cr and the digits appearing in certain expansions, defined by (4)
below, of the coordinates of the point P.

By symmetry with respect to the faces, the word w remains unchanged,
if we replace the cube by the three dimensional torus Ra/Z and imagine
that the particle does not reflect at the faces but passes through them. If we
attach the symbols a, b, and c to the intersection points of the half-line 1
{tv+P[t> 0} to the planes x= kN, y= m N, and z= n N,
resp., and trace them along l, we obtain the word w(v, P) defined above. We
remark that a point P (, r/, ) F is lattice-free w.r.t, v (1, a, fl) if
and only if
(1) kO + Z for all k N (i 1, 2, 3),
where

o,. .e,
and that almost all points P F in the sense of Lebesgue Measure are
lattice-free w.r.t, a given vector v.
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2. The sequence {[(k-+- 1)0-+- ] [k0-+- ]}k>1. One of the algo-
rithm writing down the sequence in the title of this section was given by the
authors and K. Nishioka [2], which will be used to describe the word
w- w(v, P) defined in the previous section. Here [x] denotes the greatest
integer not exceeding a real number x. We remark that if --0 the result
(see Theorem A. (i) below) is classical (cf. [3]).

Let 0--[a0;al, a2,"" "] denote the simple continued fraction of 0,
where 0-- ao / 0o, ao- [0], and 1/0-1 a + On, a- [1/0_1] (n >_ 1).
We expand in terms of the sequence {On}no. Put bo- o, bo --[--
], and define
(3) .-1/0.-1- b.- ., b. [- .-1/0.-1] (n _> 1).
Then can be expanded in the series

(4) - bo + (-- 1)" 0o01"’" O.-lb. bo.bb’" ".

By definition, 0_< . < l(n >_ 0) and b Z with 0 <_ b <_ a. + 1
(n -> 1). The series terminates if and only if bn+l 0 for some n -> 0; and
if so b. 0 for all n --> N min{ _> 1 [b 0}. Otherwise, b. >- 1 for all
n-->l.

Theorem A ([2]). Let 0 be irrational with 0 0 < 1 and be real.

(i) If qb is an integer, we have
{[(k + 1)0 + ] [kO + ]} {[(k + 1)0] [k0]} lim w.,

where Wn is given by
n-oo

W0 0, Wl 0 0 1, W. W.-1 W.-1 W.- (n _> 2).

a- times a. times

(ii) If is not an integer and if
kO+ qZfor all k N,

we have
{[(k + 1)0 + ] [kO + ]}1 lim u. v,

where Un and Vn are defined by
n-.oo

vo O, u O O, v O O1,

b times a- times

Un Un-1 Vn-l Pn-1, Vn- Pn-l Vn-1 Vn-2 (n >_ 2),

b. times a. times

and lim x. denotes the infinite word having xn as a prefix for all n.

Remark. If koO+ mo for some integers ko-> 1 and mo, we have
[(k+ 1)0+ ] [kO+] [(k--ko+ 1)0] [(k- ko)0], so that
this case can be reduced to Case (i).

Theorem A has a natural interpretation into the language of substitu-
tions.

Theorem A’ ([2]). Let 0 be irrational with 0 < 0 < 1 and be real.

(i) We have
{[(k + 1)0] [k0]} lim a,_ a. a.(0),
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where a is the substitution over {0, 1} defined by
a(0) 0 0 1, a(1) 0,

times

and the product a v of two substitution a and v is defined by a v(u)
= a(v(u)), u {0, 1} .* ({a, b,... ,d} * denotes the set of all finite words
on a, b,... ,d including the empty word.)
(ii) If Z satisfies (5), we have

{[(k + 1)0 + ] [kO + ]}k>1 lim aa,-i bl aa.b2 aa,,(),
where the left-hand side is the infinite wornaVf 0 and 1 prefixed by an auxiliary
symbol e, and aiy is the substitution over {e, 0, 1} defined by aiy(s) eO O,
a(0) 0 0 1, a(1) 0. t

times

3. Words defined by billiards on the square. In this section, we consid-
er billiards on the square I whose sides {(} I and I {(} are labelled
by a and b, resp., where ( 0 or 1. Let a particle start at a point P [0,
1) with constant velocity along a vector v-- (1, ) and reflected at each
side specularly. We assume that
(A’) O is irrational with 0 < < 1, and
(B’) the (forward) path of the particle never touch the corners of the square.
A point P [0, 1) of the property (B’) will be called lattice-free w.r.t. .
Writing down the labels a and b of the sides which the particle hits in order
of collision, we have an infinite word
(6) w- w(0, P) w(0, P;a, b).
The word w(O, P) remains unchanged, if we replace the sequence by the
torus and imagine that the particle does not reflect at the sides but passes
through them. If we attach the symbols a and b to the intersection points of
the half-line y-- x (x>0, -- r/-- 0) with the lines x-- k N
and y--m N, resp., and trace them along the half-line, we obtain the
word w(0, P) defined above. We remark that, if P (, r]) [0, 1) 2 --0
< r/ 0 < 1. Thus we have the following

Lemma 1. Let P [0, 1) be lattice-free w.r.t, a given irrational 0 with 0
0 1. Then we have

w(O, P) =m0 ml m2"" ",

2 /f-O<<l-0,m= b ifl-O<<l,
a /f[(k + 1)0 + ] [kO + ] 0,

mk= ab /f[(k+ 1)0+] [kO+] 1,
and 7 , wher is the empty word.

We remark that a point P [0, 1) 2 is lattice-free w.r.t, v (1, 0) if
and only if (5) holds with =r/- 0, and that all the points P {0}

[0, 1) t3 [0, 1) {0}, except countable many ones, are lattice-free w.r.t.
a given irrational 0 with 0 < 9 < 1.

4. An algorithm describing the words w(v, P). For any x {a, b, c}
and any word w over {a, b, c}, let vx(w) denote the word obtained by re-

where
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moving x from w. We note that vz(uv) Vx(U) vx(v) for any u, v {a, b,
c}*. Then by projecting the billiards in R3 along z, y, and x-axis, we have
the following

Lemma 2. Let P (, 7, ) 0, 1) be lattice-free w.r.t, a given
v (1, a, [3) satisfying (A) and let w w(v, P a, b, c) be the word defined
in section one. Then we have

Vc(W) w(a, (es, 7) a, b),
vb(w) w(fl, (, ) a, c),
va(w) w(fl/a, (7, );b, c),

where for instance the right-hand side of the last equality is the word defined by
(6) with 0 fl/a, P (7, ), and b, c in place of a, b.

For any word m ml m2 mt with mi {a, b, c} (1 <_ <_ g), let
Ira[denote the length g of m; in particular, I/[’-0. Now we state our
theorem.

Theorem. Let w w (v, P) be the word defined by a lattice-free point
P [0, 1) w.r.t, a given v satisfying (A). Then w can be written by the follow-
ing algorithm:
Step 1. Expand 0 and i (i-" 1, 2, 3) defined by (2) in the simple continued

fractions
0= [O;a,a,’’’]

and then in the series (4)
i b(oi), b) b( ’’’.

Step 2. Write down the sequences
(7) {[(k + 1)0i + ,] [kO, + ,]}k>1
as the word of 0 and 1, using Theorem A.
Step3.

Step4.

where

Step5.

(i- 1, 2, 3)

Write the words re(w), rb(w), Va(W) by Lemma 1 with (7) as
r(w) So s s2 ", So {,, b}, s, {a, ab} (n 1),
r(w) to t t ..., to {, c}, t, {a, ac} (n > 1),
ra(w) Uo u u2"" ", Uo {2, c}, u, {b, bc} (n >- 1).
Rewrite Va(W) in the form

ra(w) Vo v v’" ", v, {2, b, c, bc, cb}, (n >_ 1),

Ivol--Isol+ltol, lv.l=ls l+lt l-2(n 1).
Put Wo Vo, Wn aVn (n >-- 1). Then the word w is given by

W Wo W W2"’’.

Proof of Theorem. We have only to verify the last step. By Lemma 2, we
see that Sn Vc(Wn), tn v(Wn), and Vn Va(Wn) (n _> 0). Therefore Wn
(n --> 1) are determined as in the following;

an tn Vn Wn
a a , a
ab a b ab
a ac c ac
ab ac bc abc
ab ac cb acb
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