By Iekata SHIOKAWA^{*)} and Jun-ichi TAMURA^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 14, 1992)

§ 1. Introduction. We consider billiards in the cube I^3 , I = [0, 1], whose faces $\{\delta\} \times I \times I$, $I \times \{\delta\} \times I$, and $I \times I \times \{\delta\}$ are labelled by a, b, and c, resp., where $\delta = 0$ or 1 and $A \times B \times C = \{(x, y, z) \mid x \in A, y \in B, z \in C\}$. Let a particle start at a point $P \in F$ with constant velocity along a vector $v = (1, \alpha, \beta)$ and reflected at each face specularly, where $F = \{0\}$ $\times I' \times I' \cup I' \times \{0\} \times I' \cup I' \times I' \times \{0\}$, I' = [0, 1). We assume that (A) $\alpha, \beta, \beta/\alpha$ are irrational with $1 > \alpha > \beta > 0$, and

(B) the (forward) path of the particle never touch the edges of the cube.

A point $P \in F$ of the property (B) will be called *lattice-free* w.r.t, a given v. If we write down the labels a, b, and c of the faces which the particle hits in order of collision, we have an infinite sequence, or word,

 $w = w(v, P) = w(v, P; a, b, c) \in \{a, b, c\}^N.$

In [1] the authors jointly with P. Arnoux and C. Mauduit proved the following theorem conjectured by G. Ranzy: If 1, α , β are linearly independent over Q and if $P \in F$ is lattice-free w. r. t. v, then the *complexity* p(n; w) of the word w = w(v, P) is given by

$$\phi(n; w) = n^2 + n + 1 \quad (n \ge 1),$$

where p(n; w) is, by definition, the number of distinct subwords of w of length n. The purpose of this note is to give an algorithm describing the word w in terms of the *partial quotients* of the simple continued fractions of α , β , and β/α and the *digits* appearing in certain expansions, defined by (4) below, of the coordinates of the point P.

By symmetry with respect to the faces, the word w remains unchanged, if we replace the cube by the three dimensional torus $\mathbb{R}^3/\mathbb{Z}^3$ and imagine that the particle does not reflect at the faces but passes through them. If we attach the symbols a, b, and c to the intersection points of the half-line l = $\{tv + P \mid t > 0\}$ to the planes $x = k \in \mathbb{N}, y = m \in \mathbb{N}$, and $z = n \in \mathbb{N}$, resp., and trace them along l, we obtain the word w(v, P) defined above. We remark that a point $P = (\xi, \eta, \zeta) \in F$ is lattice-free w.r.t. $v = (1, \alpha, \beta)$ if and only if

(1)
$$k\theta_i + \phi_i \notin \mathbb{Z}$$
 for all $k \in \mathbb{N}$ $(i = 1, 2, 3)$, where

(2) $\theta_1 = \alpha$, $\phi_1 = \eta - \alpha \xi$, $\theta_2 = \beta$, $\phi_2 = \xi - \beta \xi$, $\theta_3 = \frac{\beta}{\alpha}$, $\phi_3 = \xi - \frac{\beta}{\alpha} \eta$, and that almost all points $P \in F$ in the sense of Lebesgue Measure are lattice-free w.r.t. a given vector v.

^{*)} Department of Mathematics, Keio University.

^{**)} Faculty of General Education, International Junior College.

§ 2. The sequence $\{[(k+1)\theta + \phi] - [k\theta + \phi]\}_{k\geq 1}$. One of the algorithm writing down the sequence in the title of this section was given by the authors and K. Nishioka [2], which will be used to describe the word w = w(v, P) defined in the previous section. Here [x] denotes the greatest integer not exceeding a real number x. We remark that if $\phi = 0$ the result (see Theorem A. (i) below) is classical (cf. [3]).

Let $\theta = [a_0; a_1, a_2, \cdots]$ denote the simple continued fraction of θ , where $\theta = a_0 + \theta_0$, $a_0 = [\theta]$, and $1/\theta_{n-1} = a_n + \theta_n$, $a_n = [1/\theta_{n-1}]$ $(n \ge 1)$. We expand ϕ in terms of the sequence $\{\theta_n\}_{n\ge 0}$. Put $\phi = b_0 - \phi_0$, $b_0 = -[-\phi]$, and define

(3) $\phi_{n-1}/\theta_{n-1} = b_n - \phi_n$, $b_n = -[-\phi_{n-1}/\theta_{n-1}]$ $(n \ge 1)$. Then ϕ can be expanded in the series

(4)
$$\phi = b_0 + \sum_{n=1}^{\infty} (-1)^n \,\theta_0 \theta_1 \cdots \theta_{n-1} b_n = b_0 \cdot b_1 b_2 \cdots$$

By definition, $0 \le \phi_n < 1$ $(n \ge 0)$ and $b_n \in \mathbb{Z}$ with $0 \le b_n \le a_n + 1$ $(n \ge 1)$. The series terminates if and only if $b_{n+1} = 0$ for some $n \ge 0$; and if so $b_n = 0$ for all $n \ge N = \min\{\nu \ge 1 \mid b_\nu = 0\}$. Otherwise, $b_n \ge 1$ for all $n \ge 1$.

Theorem A ([2]). Let θ be irrational with $0 < \theta < 1$ and ϕ be real. (i) If ϕ is an integer, we have

 $\{[(k+1)\theta + \phi] - [k\theta + \phi]\}_{k\geq 1} = \{[(k+1)\theta] - [k\theta]\}_{k\geq 1} = \lim_{n \to \infty} w_n,$ where w_n is given by

 $w_0 = 0, w_1 = \underbrace{0 \cdots 0}_{a_1 - 1 \text{ times}} 1, w_n = w_{n-1} \cdots w_{n-1} w_{n-2} \quad (n \ge 2).$

(ii) If ϕ is not an integer and if $k\theta + \phi \notin \mathbb{Z}$ for all $k \in \mathbb{N}$,

we have

$$\{[(k+1)\theta + \phi] - [k\theta + \phi]\}_{k\geq 1} = \lim_{n\to\infty} u_n v_n,$$

where u_n and v_n are defined by
 $v_0 = 0, u_1 = \underbrace{0 \cdots 0}_{b_1 \text{ times}}, v_1 = \underbrace{0 \cdots 0}_{a_1-1 \text{ times}}, 1,$
 $u_n = u_{n-1} v_{n-1} \cdots v_{n-1}, v_n = v_{n-1} \cdots v_{n-1} v_{n-2} \quad (n \geq 2),$

and $\lim_{n\to\infty} x_n$ denotes the infinite word having x_n as a prefix for all n.

Remark. If $k_0\theta + \phi = m_0$ for some integers $k_0 \ge 1$ and m_0 , we have $[(k+1)\theta + \phi] - [k\theta + \phi] = [(k-k_0+1)\theta] - [(k-k_0)\theta]$, so that this case can be reduced to Case (i).

Theorem A has a natural interpretation into the language of substitutions.

Theorem A' ([2]). Let θ be irrational with $0 \le \theta \le 1$ and ϕ be real. (i) We have

$$\{[(k+1)\theta] - [k\theta]\}_{k\geq 1} = \lim_{a \to a} \sigma_{a_1-1} \circ \sigma_{a_2} \circ \cdots \circ \sigma_{a_n}(0),$$

Sequences Defined by Billiards in the Cube

where σ_i is the substitution over $\{0, 1\}$ defined by $\sigma_i(0) = \underbrace{0 \cdots 0}_{i} 1, \ \sigma_i(1) = 0,$

and the product $\sigma \circ \tau$ of two substitution σ and τ is defined by $\sigma \circ \tau(u) = \sigma(\tau(u)), u \in \{0, 1\}$.* $(\{a, b, \ldots, d\}$ * denotes the set of all finite words on a, b, \ldots, d including the empty word.)

(ii) If $\phi \notin \mathbb{Z}$ satisfies (5), we have

 $\{[(k+1)\theta + \phi] - [k\theta + \phi]\}_{k\geq 1} = \lim_{n \to \infty} \sigma_{a_{1}-1 \ b_{1}} \circ \sigma_{a_{2}b_{2}} \circ \cdots \circ \sigma_{a_{n}b_{n}}(\varepsilon),$ where the left-hand side is the infinite word of 0 and 1 prefixed by an auxiliary symbol ε , and σ_{ij} is the substitution over $\{\varepsilon, 0, 1\}$ defined by $\sigma_{ij}(\varepsilon) = \varepsilon 0 \cdots 0,$ $\sigma_{ij}(0) = \underbrace{0 \cdots 0}_{i \text{ times}} 1, \ \sigma(1) = 0.$

§ 3. Words defined by billiards on the square. In this section, we consider billiards on the square I^2 whose sides $\{\delta\} \times I$ and $I \times \{\delta\}$ are labelled by a and b, resp., where $\delta = 0$ or 1. Let a particle start at a point $P \in [0, 1)^2$ with constant velocity along a vector $v = (1, \theta)$ and reflected at each side specularly. We assume that

(A') θ is irrational with $0 \le \theta \le 1$, and

(B') the (forward) path of the particle never touch the corners of the square. A point $P \in [0, 1)^2$ of the property (B') will be called *lattice-free* w.r.t. θ . Writing down the labels *a* and *b* of the sides which the particle hits in order of collision, we have an infinite word

(6) $w = w(\theta, P) = w(\theta, P; a, b).$ The word $w(\theta, P)$ remains unchanged, if we replace the sequence by the torus and imagine that the particle does not reflect at the sides but passes through them. If we attach the symbols a and b to the intersection points of the half-line $y = \theta x + \phi$ ($x > 0, \ \theta = \eta - \theta \xi$) with the lines $x = k \in N$ and $y = m \in N$, resp., and trace them along the half-line, we obtain the word $w(\theta, P)$ defined above. We remark that, if $P = (\xi, \eta) \in [0, 1)^2, -\theta < \phi = \eta - \theta \xi < 1$. Thus we have the following

Lemma 1. Let $P \in [0, 1)^2$ be lattice-free w.r.t. a given irrational θ with $0 < \theta < 1$. Then we have

 $w(\theta, P) = m_0 m_1 m_2 \cdots,$

where

 $m_0 = \begin{cases} \lambda & if - \theta < \phi < 1 - \theta, \\ b & if 1 - \theta < \phi < 1, \end{cases}$ $m_k = \begin{cases} a & if \left[(k+1)\theta + \phi \right] - \left[k\theta + \phi \right] = 0, \\ ab & if \left[(k+1)\theta + \phi \right] - \left[k\theta + \phi \right] = 1, \end{cases}$

and $\phi = \eta - \theta \xi$, wher λ is the empty word.

We remark that a point $P \in [0, 1)^2$ is lattice-free w.r.t. $v = (1, \theta)$ if and only if (5) holds with $\phi = \eta - \theta \xi$, and that all the points $P \in \{0\}$ $\times [0, 1) \cup [0, 1) \times \{0\}$, except countable many ones, are lattice-free w.r.t. a given irrational θ with $0 < \theta < 1$.

§ 4. An algorithm describing the words w(v, P). For any $x \in \{a, b, c\}$ and any word w over $\{a, b, c\}$, let $\tau_x(w)$ denote the word obtained by re-

Lemma 2. Let $P = (\xi, \eta, \zeta) \in [0, 1)^3$ be lattice-free w.r.t. a given $v = (1, \alpha, \beta)$ satisfying (A) and let w = w(v, P; a, b, c) be the word defined in section one. Then we have

$$\tau_c(w) = w(\alpha, (\xi, \eta); a, b),$$

$$\tau_b(w) = w(\beta, (\xi, \zeta); a, c),$$

$$\tau_a(w) = w(\beta/\alpha, (\eta, \zeta); b, c)$$

where for instance the right-hand side of the last equality is the word defined by (6) with $\theta = \beta/\alpha$, $P = (\eta, \zeta)$, and b, c in place of a, b.

For any word $m = m_1 m_2 \cdots m_\ell$ with $m_i \in \{a, b, c\}$ $(1 \le i \le \ell)$, let |m| denote the length ℓ of m; in particular, $|\lambda| = 0$. Now we state our theorem.

Theorem. Let w = w(v, P) be the word defined by a lattice-free point $P \in [0, 1)^3$ w.r.t. a given v satisfying (A). Then w can be written by the following algorithm:

Step 1. Expand θ_i and ϕ_i (i = 1, 2, 3) defined by (2) in the simple continued fractions

$$\theta_i = [0; a_1^{(i)}, a_2^{(i)}, \cdots]$$

and then in the series (4)

$$\phi_i = b_0^{(i)}, \ b_1^{(i)} \ b_2^{(i)} \cdots$$

Step 2. Write down the sequences

(7)
$$\{[(k+1)\theta_i + \phi_i] - [k\theta_i + \phi_i]\}_{k \ge 1} \quad (i = 1, 2, 3)$$

as the word of 0 and 1, using Theorem A.

Step 3. Write the words
$$\tau_c(w)$$
, $\tau_b(w)$, $\tau_a(w)$ by Lemma 1 with (7) as $\tau_c(w) = s_0 s_1 s_2 \cdots, s_0 \in \{\lambda, b\}, s_n \in \{a, ab\} \ (n \ge 1),$

 $\tau_b(w) = t_0 t_1 t_2 \cdots, t_0 \in \{\lambda, c\}, t_n \in \{a, ac\} (n \ge 1),$

 $\tau_a(w) = u_0 u_1 u_2 \cdots, u_0 \in \{\lambda, c\}, u_n \in \{b, bc\} \ (n \ge 1).$

Step 4. Rewrite $\tau_a(w)$ in the form

$$\tau_a(w) = v_0 v_1 v_2 \cdots, v_n \in \{\lambda, b, c, bc, cb\}, (n \ge 1),$$

where

$$|v_0| = |s_0| + |t_0|, |v_n| = |s_n| + |t_n| - 2 \ (n \ge 1).$$

Step 5. Put $w_0 = v_0$, $w_n = av_n$ $(n \ge 1)$. Then the word w is given by $w = w_0 w_1 w_2 \cdots$.

Proof of Theorem. We have only to verify the last step. By Lemma 2, we see that $s_n = \tau_c(w_n)$, $t_n = \tau_b(w_n)$, and $v_n = \tau_a(w_n)$ $(n \ge 0)$. Therefore w_n $(n \ge 1)$ are determined as in the following;

a_n	t_n	v_n	Wn
a	a	λ	a
ab	a	b	ab
a	ac	С	ac
ab	ac	bc	abc
ab	ac	cb	acb

References

- P. Arnoux *et al.*: Complexity of sequences defined by billiards in the cube. Prépubl. Math. Univ. Paris, WI, N°17 (1992).
- [2] K. Nishioka, I. Shiokawa, and J. Tamura: Arithmetical properties of certain power series. J. Number Theory, 42, 61-87(1992).
- [3] K. B. Stolarsky: Beatty sequences, continued fractions, and certain shift operators. Canad. Math. Bull., 19, 473-482 (1976).