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1. Introduction. Gauss’ hypergeometric function F F (c,/3, 7 ;x)
is defined to be the power series

(g/)n( #)n(1.1) F- ..o (r)’(1); xn’
where (a)n a(a+ 1)(a+2) (a+ n-- 1) etc. It satisfies a well-
known differential equation

d.F dF_(1 2) x(1 x) {(a + fl + 1) x- 7}-d aflF- 0
dx

It is sometimes more convenient to write it in the form
(1.3) (x-*O(O + ). 1) (0 + a)(O + fl)) F O,
where 0 xd/dx. Heine defined its q-analogue qo (p(c,/5, 7 ;q;x) by the
following power series (see, for example, [3]):

(1.4)
q E [C]q[O + 1]q [Cr + n 1]q[/]q[/ + 1]q"-[fl + n 1] xn

n=o [’]q[" + 1]q... [7 + n 1][1],[2]... [n]q
Here [c], denotes the basic number. That is

qA__ q-A
(1.5) [A] _

q--q
for any number A.

Remark. Heine and some authors define the basic number by the formula
1 qA

(1.6) [A]: l--q"
Some formulas look differently in this case (compare [1]). Throughout this
paper, we stick to (1.5).

We introduce a shift operator T by
(1.7) Tf (x) f (qx),
and a q-difference operator

T-- T-[O]q
1q--q

The latter is a q-analogue of xd/dx. We also introduce

q’T- q-T-(1.8) [0 -- O{.]q
-1q--q

so that, we have
(1.9) [0 -- Od]qX n [n + a]qXn.

The power series (1.4) satisfies the following q-difference equation
(1.10) (X--l[O]q [0 + T- 1]q [0 + Ol]q[O + #]q) () O.
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This is an analogue of (1.3).
If we fix a set of parameters (c, fl, 7"), then F (c’, fl’, 7"’ x) is called a

contiguous function of F(c,fl, 7;x), provided that Ic--c’l, I--fl’l,
[7.- 7’’[ are all less than or equal to 1. It is known that there are differen-

tial operators of order 1 which produce contiguous functions out of F(c,
fl, 7’;x) ([9,7]). These operators can be labeled as Eij (1

_
i, j g 4, i #: j),

and they correspond to basis elements of the Lie algebra [(4). We introduce

a new set of parameters/, i 1, 2, 3, 4 by the following relations
a- , fl 1 /4, 7’- 2 + 2- 2 X- /4,

with _-x/- 2. Then Ej increases/i and decreases / by 1. For example,

E raises c and 7", while Ex simply lowers 7.. This new set of parameters
stems from the Grassmann point of view of Gelfand et al ([4,5,6]) that F
should be regarded as a function on the Grassmannian G,4 of the 2-planes
in a 4-space, on which SL(4) acts on the right.

In this paper, we explicitly write down the contiguity relations for

Heine’s series in terms of q-difference operators and the shift operator. It
turns out that these operators constitute a representation of U(SL(4)), the

q-analogue of the universal enveloping algebra of the Lie group SL(4)
(see[2,8]).

2. Contiguity operators. We first introduce the following 4 obvious

operators acting on Heine’s series.

(2.1) E23 [0 -- O]q,
(2.2) E4 [0 + ],
(2.3) Ea [0 -{- 7. 1]q,
(2.4) E4 x- [O]q.
To describe the operation of E on Heine’s series, we introduce the following

notation. We simply write (p instead of (p(c, fl, 7’;q ;x) and indicate the
contiguous functions by super and subscripts. For example

q (p(a 4- 1, fl, 7’ ;q ;x),
qo (p(a, fl, 7’ 1 ;q ;x),
o’r- o(a+ 1, fl+ 1,7+ 1;q;x).

The above 4 operators satisfy

(2.5) E(p [a]o,
(2.6) Eo -[#]
(2.7) Exaq)- [7- 1]qq)r,

[a] [fl](2.8) E4p [7],
We note (1.10) is written in the form

(E4E3- E,4E)p- O.
By analogy of the classical factorization method, we obtain

(2.9) E x[O + ]q [0 + 7- a], Ep [a 7]qq,,
(2.10) E4-x[0+a]-- [0+ 7-- fl], E4p [fl 7]q,

[a r], [#(2.11) E [0 -F- a -k fl- 7’] x-[O], Eq [7’]
(2.12) E4=x[0+ a+fl-- 1]-- [0+ 7-- 1], E42(p [1 7] qq)a7"
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We further define

(2.13) E12-- (q%c[O+fl]q-- [0+ T-- 1]q)T,

(2.14) E2I- (q’[O + a]- qr-lx-l[0])T,

E- [1

[a]- #]Eq

(2.15)

(2.1

E34 (q"[O + #]q qr-lx-l[O]q) T
E34 ()

[#] q TT]q- I] q ()7,

6) E43- (qx[O + C]q- [0 + T- 1]q)T, E43(p- [1- T]qO.
We remark that these are determined by the following relations:

(2.17) EIE.- q-IEEI q3-1El,
(2.18) E14E4z qE4.E14 ql-’Elz,
(2.19) E3EI- qEE q-E,
(2.20) E24E4- q-lEtE24 q’-’Ez,
(2.21) E4Ez q-EzE4z qa-E4,
(2.22) E4E- qEE4 q-’E4,
(2.23) EEz4- qEz4Ez q-E4,
(2.24) EE4- q-E4E q’-E4.

Theorem 1. These 12 operators Eu, j give contiguity relations which,

in the limit q-- 1, reduce to those for Gauss’ hypergeometric function.
3. Representaion of Uq(SL(4)). We set

ei-- Ei,i+l, -- E+l,i, i- 1, 2, 3.
By a direct calculation, the commutator [e, fi] efi --e satisfies

(3.1) [e,A]D [/t- /l+1]q, 1, 2, 3.
In view of these, we define

(3.2) qh,q) q’-’+’O, i 1, 2, 3.
Then we have

qh q-h
(3.3) [e, fi]0 -i O, i-- 1, 2, 3.
We also have q- q

(3.4) qeq-’q
(3.5) qh,fq-h,rp- q-a,,j(p,
where aii 2, a,+/-l 1, and aj-- 0 for the rest. In order to show that
these operations give a representaion of the q-analogue Uq(SL(4)) of the uni-
versal enveloping algebra of SL(4), we check that the following equalities
hold in addition to (3.3)- (3.5)(see[8]).
(3.6) ee+/-l (q + q-1)ee+/-lei + e+/-le O,
(3.7) AzA+/-I- (q + q-1)AA+/-w + fi+/-2 0,
(3.8) eiej= eei for i--j I> 1,
(3.9) AA AA for i Y > 1,
(3.10) efi --fie for j.
(The double signs are to be read in same order in (3.6) (3.7).)

We can state our main result as follows.
Theorem 2. These actions of {ei, j, qh,} determine a representation of

Uq(SL(4)).
This is valid not only for (1.4), but also for any solution of (1.10). In a
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forthcoming paper, we shall study a similar problem for a q-analogue of
Lauricella’s FD of variables, which is related to the Grassmannian
and therefore to SL(I + 3).
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