59. Z_{p}-independent Systems of Units

By Claude Levesque
Département de mathématiques et de statistique, Université Laval, Canada (Communicated by Shokichi Iyanaga, M. J. A., Oct. 12, 1992)

Abstract

Some systems of units known to be independent over \boldsymbol{Z} are shown to be independent over some rings of p-adic integers.

§1. Introduction. Let p be a prime and let \boldsymbol{Z}_{p} denote the ring of p-adic integers. In this note we plan to exhibit for a fixed prime p some \boldsymbol{Z}_{p}-independent systems of units. The motivation of this study is Leopoldt's conjecture for a finite algebraic extension K of \boldsymbol{Q}, which states that for every prime p the \boldsymbol{Z}_{p}-rank of the group E_{K} of units (modulo torsion) of K is equal to the \boldsymbol{Z}-rank of E_{K}; see [8] for the definitions and the details. Thanks to J. Ax and A. Brumer [1], Leopoldt's conjecture is known to hold true if K is abelian over \boldsymbol{Q} or if K is in an abelian extension of some imaginary quadratic field.

Though transcendence methods are rather natural and quite powerful to deal with Leopoldt's conjecture (see [7]), a few mathematicians developed interesting algebraic methods to study this problem. For instance J. Buchmann and J. Sands $[2,3,6]$ gave appealing algebraic characterizations of the conjecture. Moreover they explicitly exhibited two infinite parameterized families of fifth degree fields, whose Galois closure has Galois group isomorphic to the symetric group S_{5} and whose unit group rank is two (resp. three), for which Leopoldt's conjecture is true for a fixed prime $p(\neq 5)$. The criterion that J. Buchmann and J. Sands used in [3] gives, for a fixed prime p, a necessary and a sufficient condition for a set of units to be independent over \boldsymbol{Z}_{p}. In the following section we will quote this criterion and, given a fixed prime p, we will use it to exhibit some parameterized families of pure fields of degree n for which a \boldsymbol{Z}-independent system of $\tau(n)-1$ units will be shown to be \boldsymbol{Z}_{p}-independent. Here $\tau(n)$ denotes the number of positive divisors of n, so $\tau(n)-1$ is a large number if n is divisible by many different primes.
§2. Systems of units. Let us consider the pure field $K=\boldsymbol{Q}(\omega)$ of degree \boldsymbol{n} over \boldsymbol{Q} where

$$
\omega:=\sqrt[n]{D^{n} \pm 1}>1 \text { with } D \in \boldsymbol{N}
$$

and let us define ε_{t} by

$$
\varepsilon_{t}:=\omega^{t}-D^{t} .
$$

Then (under more general hypotheses) it was proved by F. Halter-Koch and H. -J. Stender [5] (cf. [4]) that

$$
S:=\left\{\varepsilon_{t}: t \in \boldsymbol{N}, t \mid n, t \neq n\right\}
$$

is a \boldsymbol{Z}-independent system of $\tau(n)-1$ units of K. We want to prove the following result.

Theorem 2.1. Let p be a fixed odd prime divisor of D such that (p, n) $=1$. Then S is a \boldsymbol{Z}_{p}-independent system of units.

Let us consider a set \widetilde{S} of r units of a field K which generates a group of finite index in the group generated by a fixed \boldsymbol{Z}-independent set S_{0} of r units, and such that all the units of \widetilde{S} are congruent to 1 modulo (p^{k}) for some fixed integer $k \geq 1$; here $\left(p^{k}\right)$ is the ideal of the ring O_{K} of integers of K generated by p^{k}. Consider $\langle\widetilde{S}\rangle$, the group of units generated by \widetilde{S}, and as in [3] define ϕ_{k} the homomorphism of the multiplicative group $\langle\widetilde{S}\rangle$ into the additive group $O_{K} / p O_{K}$ by

$$
\phi_{k}\left(1+p^{k} \alpha\right)=\alpha+p O_{K}
$$

Let us state a result which is contained in Corollary 2.4 of [3].
Proposition 2.2. A set \widetilde{S} of r units congruent to 1 modulo (p^{k}) is \boldsymbol{Z}_{p}-independent if the image of $\langle\widetilde{S}\rangle$ by ϕ_{k} in $O_{K} / p O_{K}$ has dimension r as a vector space over $\boldsymbol{F}_{p}=\boldsymbol{Z} / p \boldsymbol{Z}$.

To prove Theorem 2.1, we want to use the criterion of the last proposition. First note that

$$
\begin{aligned}
\varepsilon_{t}^{n / t} & =\left(\omega^{t}-D^{t}\right)^{n / t} \\
& = \pm 1+D^{n}+\sum_{j=1}^{n / t}\binom{n / t}{j} \omega^{n-t j}\left(-D^{t}\right)^{j} \\
& = \pm 1+\left(\frac{n}{t}\right)(-D)^{t} \omega^{n-t}+D^{t+1} \alpha_{t}
\end{aligned}
$$

for some algebraic integer $\alpha_{t} \in O_{K}$. Letting $c=1$ (resp. 2) if $\omega^{n}=D^{n}+1$ (resp. $D^{n}-1$), we deduce

$$
\varepsilon_{t}^{c n / t}=1-(-1)^{c+t} c\left(\frac{n}{t}\right) D^{t} \omega^{n-t}+D^{t+1} \beta_{t}
$$

for some algebraic integer $\beta_{t} \in O_{K}$. Therefore we conclude that for all positive divisors t of $n, t \neq n$, we have

$$
\eta_{t}:=\varepsilon_{t}^{\varepsilon_{t}^{n} D^{n-t}}=1-(-1)^{c+t} c\left(\frac{n}{t}\right) D^{n} \omega^{n-t}+D^{n+1} \gamma_{t}
$$

for some algebraic integer $\gamma_{t} \in O_{K}$.
Let us assume that s is an integer such that $p^{s} \| D$ (i.e., $p^{s} \mid D$ and p^{s+1} $\Varangle D)$. So we can count on the system

$$
\widetilde{S}:=\left\{\eta_{t}: t \in N, t \mid n, t \neq n\right\}
$$

of $\tau(n)-1$ units which are all congruent to 1 modulo $p^{n s} O_{K}$. Taking $k=n s$ in Proposition 2.2, we have for all divisors t of n,

$$
\phi_{n s}\left(\eta_{t}\right)=(-1)^{c+i+1} c\left(\frac{n}{t}\right)\left(\frac{D}{p^{s}}\right)^{n} \omega^{n-t}+p O_{K}
$$

Now the hypotheses that p^{s} is the exact power of p dividing D and that $(p, n)=1$ imply that the coefficient of ω^{n-t} is coprime to p. In order to conclude that \widetilde{S} is \boldsymbol{Z}_{p}-independent, we only have to show by Proposition 2.2 that the image of the set $\left\{\omega^{n-t}: t \in \boldsymbol{N}, t \mid n, t \neq n\right\}$ is a set of independent images under $\phi_{n s}$ in the \boldsymbol{F}_{p}-vector space $O_{K} / p O_{K}$. Denote by d_{f} the discriminant of the minimal polynomial f of ω, so $d_{f}=n^{n} m^{n-1}$ with $m=D^{n} \pm 1$. Then we have the conclusion since the powers $\omega^{j}(j=0,1, \ldots, n-1)$ form a basis for an order of O_{K} of index dividing d_{f} and since $\left(d_{f}, p\right)=1$.

In summary, an application of Proposition 2.2 gives that \widetilde{S} is \boldsymbol{Z}_{p}-independent. Since $\langle\widetilde{S}\rangle$ is of finite index in $\langle S\rangle$ we conclude (as in Chapter II of [3]) that S is also \boldsymbol{Z}_{p}-independent.
§3. Concluding remarks. Of course if $p_{i}^{m_{i}} \| D$ for some prime integers $p_{i}(i=1, \ldots, l)$, we have that S is a $\boldsymbol{Z}_{p_{i}}$-independent system of units for $i=1, \ldots, l$, but this says nothing about the infinitude of the primes q such that S is \boldsymbol{Z}_{q}-independent. Finally note that the above proof works for $p=2$ under the assumptions that $(2, n)=1$ and that a sufficiently high power of 2 divides D (since the contribution of $2 \mathrm{in} \mathrm{cn} / \mathrm{t}$ has to be taken into account) : the integer k of Proposition 2.2 has to be adjusted accordingly.

Acknowledgements. The author is grateful to Dr. Jonathan Sands for stimulating conversations. The first draught of this paper was written during a sabbatical stay at Florida Atlantic University and benefitted from the financial support of NSERC (Canada) and FCAR (Québec).

References

[1] Brumer, A.: On the units of algebraic number fields. Mathematika, 14, 121-124 (1967).
[2] Buchmann, J. and Sands, J.: An algorithm for testing Leopoldt's conjecture. J. Number Theory, 27, 92-105 (1987).
[3] - - Leopoldt's conjecture in parameterized families. Proc. of the AMS, 104, no. 1, 43-48 (1988).
[4] Frei, G. and Levesque, C.: On an independent system of units in the field $K=\boldsymbol{Q}\left(\sqrt[n]{D^{n}+d}\right)$ where $d \mid D^{n}$. Abh. Math. Univ. Hamburg, 51, 160-163 (1980).
[5] Halter-Koch, F. and Stender, H.-J.: Unabhängige Einheinten für die Körper $K=\boldsymbol{Q}\left(\sqrt[n]{D^{n}+d}\right)$ mit $d \mid D^{n}$. ibid., 42, 33-40 (1974).
[6] Sands, J.: Kummer's and Iwasawa's version of Leopoldt's conjecture. Canad. Math. Bul., 31, 338-346 (1988).
[7] Waldschmidt, M.: Transcendance et exponentielles en plusieurs variables. Invent. Math. , 63, 97-127 (1981).
[8] Washington, L.: Introduction to Cyclotomic Fields. Graduate Texts in Math., Springer-Verlag (1982).

