58. A Remark on the Class-number of the Maximal Real Subfield of a Cyclotomic Field. III

By Hiroyuki OSADA

Department of Mathematics, National Defence Academy (Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1992)

For any number field K of finite degree, we denote by h(K) the class number of K. For a prime p, ζ_p denotes a primitive p-th root of unity. In this note, we show the following:

Theorem. Let q be an odd prime such that p = 6q + 1 is also a prime. We assume the following condition.

(c) q+1 is not a power of 2, 2q+1 is not a power of 3, and 4q+1 is not a power of 5. Then

$$h^+(p) < p$$
 and $h(k(p)) > 1 \Rightarrow h^+(p) = h(k(p))$,

where $h^+(p)$ denotes $h(Q(\zeta_p + \zeta_p^{-1}))$ and k(p) is the unique cubic subfield of $Q(\zeta_p)$ over Q of a prime conductor p.

We need the following:

Proposition. Let p and q be distinct primes. Let F be a finite algebraic number field. Suppose E/F is a Galois q-extension and f is the order of p mod q. Then, for any α with $0 \le \alpha < f$,

$$p^{\alpha} \| h(E) \Rightarrow p^{\alpha} \| h(F)$$

(see [3]).

Proof. First of all, we need the following:

Lemma. Let p and q be distinct primes. Let G be a finite group of order $p^{\alpha}q^{\beta}$. Let f be the order of $p \mod q$. Let H be a q-Sylow subgroup of G and $\alpha < f$. Then H is a normal subgroup of G (see [3]).

Let P(E) be the maximal abelian unramified p-extention of F contained E and G = G(P(E)/F). By the above lemma, the q-Sylow subgroup H of G is a normal subgroup of G. Let M be the subfield of P(E) which corresponds to H. Then M/F is a Galois extention and $G(M/F) \cong G(P(E)/E)$. Therefore M/F is an abelian unramified extention of degree p^{α} . Therefore we have $p^{\alpha} \mid h(F)$. If $p^{\alpha+1} \mid h(F)$, then $p^{\alpha+1} \mid h(E)$. We conclude the above Proposition.

Corollary. Let
$$p$$
, q , E , F and f be as in Proposition. Then $p \nmid h(F)$, $p \mid h(E) \Rightarrow p^f \mid h(E)$,

and

$$p^{\alpha} \| h(F) \Rightarrow p^{\alpha} \| h(E) \text{ or } p^{f} | h(E).$$

Proof of the theorem. Since $h^+(6\cdot 5+1)=h^+(31)=1$, we may assume q>5. Put $K=Q(\zeta_p+\zeta_p^{-1})$ and k=k(p). By the assumption on p and q, K/k is a q-extention. If $q \nmid h(k)$, then $q \nmid h(K)$ (see [1]). Since $h(k)<\frac{2}{3}p$ (see [2]) and h(K)< p, it is easy to show that if $q\mid h(k)$, then

 $q \parallel h(k)$ and $q \parallel h(K)$. Now let r be an odd prime. If $r \equiv 1 \pmod{q}$, $r \mid h(k)$ and $r \mid k(K)$, then r = 1 + 2nq, where n = 1 or 2. Since $r^2 > p$, we have that $r \parallel h(k)$, $r \parallel h(K)$. If $r \equiv 1 \pmod{q}$ and $r \nmid h(k)$, $r \mid h(K)$, then $h(K) \ge r \cdot h(k) \ge 4r > p$, where $h(k) > 1 \Rightarrow h(k) \ge 4 \pmod{q}$. Hence we have that $r \nmid h(k) \Rightarrow r \nmid h(K)$. Now f > 1 is the order of $r \pmod{q}$. We will show that $r^f > p$.

In case $r \ge 7$, $r^f - 1 = (r - 1)(r^{f-1} + \cdots + 1)$ can not be 2nq, where n = 1 or 2.

Let r = 5 and $5^f = 1 + 2q$. Since $5^f - 1 = 2q$, $4(5^{f+1} + \cdots + 1) = 2q$. This is a contradiction.

Let r=3 and $3^f=4q+1$. Then f is even. Now let f=2m for some integer m. Hence $(3^m-1)(3^m+1)=4q$. This is a contradiction.

Next let r=2. Then $2^f=1+3q$ or $2^f=1+5q$. If $2^f=1+3q$, then we have that f=2m for some integer m. Since $(2^m-1)(2^m+1)=3q$, we should have m=2, q=5. Therefore we have that $2^f \ne 1+3q$. If $2^f=1+5q$, then f=4m for some integer m. Since $2^f-1=(4^m-1)(4^m+1)=5q$ and $3 \mid 4^m-1$, we have that $2^f \ne 1+5q$.

Hence we have $r^f > p$. By Corollary, we have that $r \not\vdash h(k) \Rightarrow r \not\vdash h(K)$ and if $r^m \parallel h(k)$, for some integer m, then $r^m \parallel h(k)$. This completes the proof.

Examples. Suppose p = 607 or 1879. Suppose $h^+(p) < p$. Then $h^+(p) = h(k(p)) = 4$ (see [5]).

Remark 1. Let q and p=6 q+1 be primes. Then we have only 5 example $\{3, 7, 13, 127, 1093,\}$ for $q<10^8$, which do not satisfy the condition (c) in the theorem.

Remark 2. Let p be a prime. We have no example for $h^+(p) > 1$ such that $h^+(p)$ is completely determined.

References

- [1] J. Masely: Class numbers of real cyclic field with small conductors. Compositio Math., 37, 297-319 (1978).
- [2] C. Moser and J. J. Rayan: Majoration du nombre de classes d'un corps cubique cyclique de conducteur premier. J. Math. Soc. Japan, 33, 701-706 (1981).
- [3] H. Osada: A remark on the class-number of the maximal real subfield of a cyclotomic field. II. Proc. Japan Acad., 68 A, 41-42 (1992).
- [4] L. C. Washington: Introduction to Cyclotomic Field. Springer (1982).
- [5] M. N. Gras: Méthodes et algorithmes pour le calcul numérique du nombre de classes et umités des extentions cubiques cycliques de Q. J. reine angew. Math., 277, 89-116 (1975).