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55. Ewvolution Governed by “Generalized” Dissipative Operators

By Yoshikazu KOBAYASHI™ and Naoki TANAKA™™*
(Communicated by Koyosi ITO, M. J. A., Oct. 12, 1992)

Let X be a real Banach space with norm |- |. For x € X and f€
L'(0, T : X), we consider the abstract Cauchy problem of the form

. ddatyu(t) € Au(t) + f(t), forte (0, T),
(CP;z, f) Loy =)
where A is a multivalued operator in X satisfying the dissipative condition
of the following general type:
(GD) There exists a “uniqueness function” w such that

[z — 22, n — )= < w21 — 22 |)
for X1, X2 = D(A), Y =3 A.Z‘l and Y2 e A.Z'z.
We mean by the “uniqueness function” a real valued continuous function w
defined on [0, ©©) such that w(0) = 0 and that #(#) = 0 is the unique solu-
tion of the initial value problem: (d/dt)r(t) = w(»#)), t=0 and
r(0) = 0. The semi-inner products [+, ‘1 are defined by
[z, yl. = liin(|x+ Ayl — |z |)/2 and [z, y]- = li¥n(lx + Ayl —lzh
210 AToO

forx, y € X.

The first aim of this note is to introduce a notion of generalized solu-
tions, i.e., that of mild solutions, to the Cauchy problem (CP;x, f) and to
investigate its fundamental properties. The second is to discuss the existence
of mild solutions of the problem (CP;x, f). Here, we sketch our results.
The details of the results will be exhibited elsewhere.

1. Properties of mild solutions. We introduce a notion of solutions,
called herein mild solutions, which refers directly to the approximation
method used to establish the existence of solutions, so-called method of dis-
cretization in time.

Definition 1. Let ¢ > 0. A piecewise constant function % : [0, ty] = X
is said to be an e-approximate solution of (CP; x, f) on [0, T1, if there ex-
ists a partition {0 = ¢, < # < - -+ < ty} of the interval [0, #y] and a finite
sequence ((x;, f;) :1=1,:-+,N) with the four properties below :

_[xo fort=0
(e.1) u(t) = {xl for t € (ti_y, ]
and

(ti — tic) M@ — 2icy) € Axi + f,
fori=1,---,N,
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(5.2) t,-—ti_lée,i=l,2,"',Nand T_8<tN£T,
(e.3) |z — x| < e,

N
(c.4) S ["1fm—rlds<e.

i=1+ ti

Definition 2. A continuous function # : [0, T] — X is said to be a mild
solution of (CP;x, f) on [0, T], provided that for each € > O there is an
e-approximate solution #® of (CP;x, f) on [0, T1 such that | #(f) — u°(¢) |
< ¢ for t in the domain of #®.

We have the following type of uniqueness theorem for mild solutions (cf.
Bénilan [1]).

Theorem 1. Let u:[0, T1— X and v:[0, T1 = X be mild solutions
of (CP;x, f) and (CP ; y, g) on [0, T1, respectively. Then

lu@® —o@® | —uls) — vis)|

< [Mlu@ = v0), f©0) — 2@+ + 0 u(0) = v(@D)} do

for s, t € [0, T1 with s <t Iff=g in L*(0, T : X) and x = y in particu-
lay, then u(t) = v(t) on [0, T].

2. Existence of mild solutions. The following is one of the most fun-
damental theorems concerning the convergence of e-approximate solutions
(cf. Kobayashi [6] and Takahashi [10]).

Theorem 2. For each € > 0, let u®: [0, t§]— X be an e-approximate
solution of (CP;x, f) on [0, T1. If x € D(A), then the following statements
are mutually equivalent.

(i) sup{lus(®)|: ¢t €[0, 51} is bounded as e | 0.
(ii) Theve exists a mild solution u of (CP;x, f) on [0, T]1 such that sup
{luc(t) — u(@) | : t [0, ti 1} converges to zero as e | 0.

The proof of Theorem 2 is based on

Lemma 1. Suppose that for A, i > 0, three sequences {t}}Y2,, {t#}N%4 and
{al#:1=0,1,--- ,Nyiand j = 0,1, - -,N,} of nonnegative numbers satisfy the
following four conditions :

HOoO=g<tH<- - < th, 0=t < H<- - <th,
hi:=H—t.<21, (=12, ,N;,, T— A< t,<T,
h.=tt—-—t <y 5j=12,-,N,, T—pu<th,=<T,

(ii) there exists a number K > 0 such that ai¥ < K for 0 < { < N; and

0<j5;< N,
(iii) there exist M = 0 and A, = 0 with lim sup;, | 0 Asy < A < © such
that
ar < A+ H—t|Mfori=0o0rj=0,

(iv) there exist L = 0 and B, = 0 with lim sup;, | 0o Biy < B < % such

that

(@bt — att )/hi + (aly — atf)/my < walf) + LIt} — t#| + Bay

forl1 i< Nyand1l <1< N,.

Then we have
lim sup(sup {@}#:0 < i< N; and 0 << N, with |t —t#| <A+ u+ h})

Aulo
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Ssuplmg(t:n+hM,Lh+7n):t<€ [0, T} + n KA+ B)
for h =20 and 7 > 0. Heve mg(t : o, B) is the nonextentable maximal solution
of the imitial problem: (d/dt)r(t) = wg(r(t)) + B8,t=0 and »(0) = a,
where o, B 2 0 and wg s defined by
_fow@r) for0<r<K,
wx(r) = {w(K) forr> K.

Roughly speaking, Lemma 1 is proved by comparing a?¥ with Ax,, (¢, t#),
by using the following difference approximate version (Lemma 2) of compari-
son theorem, where Ag,(t, s): =mx(tAs:np+|t—s|M,L|t—s|+n)
is a solution of partial differential equation :

wur(t, s) + us(t,s) = wxg(u(t,s)) +L|it—s|+n,
in D’((0,T) X (0, T))
u(t,s)=n+|t—s|M,t=0o0rs=0.
Lemma 2. Suppose that A > 0 and two families {a, ao, bo} and {A, A,,
By} of nonnegative numbers satisfy two inequalities
(A — Ap)/A = wk(A) + By and (@ — ao)/A < wx(a) + bo.
If bo + 200x(A(wo(K) + b)) < By then ao < Ao implies a < A. Here Pux is
the modulus of continuity of wx and we(K) = sup{| wx() | : ¥ = 0}.
Outline of the proof “(i) = (ii)” of Theorem 2: Let A, x> 0 and
g € Lip([0, 7] : X). We set
A} (g) := max{|lz} — zf' | — E}(g) — Ef(g), 0}
for 0 <1< N;and 0 <j < N, where E}(g) and E#(g) are defined by

Eiz(g) = él(tll‘ - t/é_l) lf,f - g(té) |, l= 0,1’. . .’I\L1

and i
Ef(g) = El(t;‘é —#)IfE—gtyl,j=0,1,- N,

Then we may show that {43#:0 <7 < N; and 0 < j < N,} satisfies three
estimates corresponding to (ii), (iii) and (iv) of Lemma 1. Since |xf — x#|
< At (g) + Ef.(g) + Ef,(g), it may be proved by Lemma 1 that

lim sup (sup{|#*(t) — u“(t) | : t € [0, t},]1 N [0, t£.]1})

2ulo

< suplmx(t:n, 1) : t < [0, T]}+2_[;T|f(t)—g(t)|dt

+7]_1K<2|x—u|+pa)x<2fOT|f(t)—g(t)ldt))

for n > 0, u € D(A) and g € Lip([0, 7] : X). It thus is shown that the
limit lim, o #*(f) exists for ¢t € [0, T) by noting that mg(t:n, n)
converges to zero uniformly on [0, 7] as » — 0 + and Lip ([0, 7] : X) is
dense in L'(0, T : X).

We define S(4) = {z€ X :liminfi_or A7 Md(RU — AA), x+ 12) =0
for any x € D(A)}. By using Theorem 2 and [11, Lemma 3.2], we have the
following existence theorem of mild solutions (cf. Bénilan [1] and Kobayashi
[6)):

Theorem 3. Suppose that the uniqueness function w satisfies the condition
that lim sUpy—w(»)/r < oo . If x € D(A) and f (t) € S(A) for almost all
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t € (0, T), then there exists a (unique) mild solution of (CP ; x, f) on [0, TI.
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