81. On the Cardinality of Value Set of Polynomials with Coefficients in a Finite Field

By Javier Gomez-Calderon
The Pennsylvania State University
(Communicated by Shokichi, IYANAGA, M. J. A., Dec. 14, 1992)

1. Introduction. Let F_{q} denote the finite field of order q where q is a prime power. If $f(x)$ is a polynomial of positive degree d over F_{q}, let $V_{f}=\left\{f(x): x \in F_{q}\right\}$ denote the image or value set of $f(x)$ and $\left|V_{f}\right|$ denote the cardinality of V_{f}. Since $f(x)$ cannot assume a given value more than d times, it is clear that

$$
\left[\frac{q-1}{d}\right]+1 \leq\left|V_{f}\right| \leq q
$$

where $[x]$ denotes the greatest integer $\leq x$. Uchiyama [3] has proved that if F_{q} is of sufficiently large characteristic and

$$
\frac{f(x)-f(y)}{x-y}
$$

is absolutely irreducible, then $\left|V_{f}\right|>\frac{q}{2}$ for all $d \geq 4$. Carlitz [1] has also proved that $\left|V_{f}\right|>\frac{q}{2}$ "on the average." More precisely, Carlitz proved that

$$
\sum_{a_{1} \in F_{q}}\left|V_{f}\right| \geq \frac{q^{2}}{2}
$$

where the summation is over the coefficients of the first degree term in $f(x)$.
In this note we determine a lower bound for $\left|V_{f}\right|$ when $(d, q)=1$, $d^{4}<q$ and the multiplicative order of q modulo $p_{i}^{a_{i}}$ is $p_{i}^{a_{i}}-p_{i}^{a_{i}-1}$ for all prime power $p_{i}^{a_{i}} \| d$. We prove that

$$
\left|V_{f}\right| \geq \frac{q}{1+\sum_{D \mid d} \emptyset(D) / \operatorname{lcm}\left(\emptyset\left(p_{1}^{b_{1}}\right), \ldots, \emptyset\left(p_{r}^{b_{r}}\right)\right)}
$$

where $D=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{b_{r}}$ and $\emptyset(D)$ denotes the Euler Phi Function.
2. Theorem and proof. We will need the following two lemmas.

Lemma 1. Let $f(x)$ be a monic polynomial over F_{q} of degree $d<q$. Let \# $f^{*}(x, y)$ denote the number of solutions (x, y) in $F_{q} \times F_{q}$ of the equation $f^{*}(x, y)=f(x)-f(y)=0$. Assume

$$
\# f^{*}(x, y) \leq c q
$$

for some constant $c, 1<c<d$. Then

$$
\frac{q}{c} \leq\left|V_{f}\right|
$$

Proof. Let R_{i} denote the number of images of $f(x)$ that occur exactly i times as x ranges over F_{q}, not counting multiplicities. Then

$$
\sum_{i=1}^{d} i R_{i}=q, \quad\left|V_{f}\right|=\sum_{i=1}^{d} R_{i}, \text { and } \# f^{*}(x, y)=\sum_{i=1}^{d} i^{2} R_{i} .
$$

Hence, we can apply Cauchy-Schwarz inequality to obtain

$$
\begin{aligned}
q^{2} & =\left(\sum_{i=1}^{d} i R_{i}\right)^{2} \\
& \leq\left(\sum_{i=1}^{d} i^{2} R_{i}\right)\left(\sum_{i=1}^{d} R_{i}\right) \\
& \leq \# f^{*}(x, y)\left|V_{f}\right| .
\end{aligned}
$$

Therefore, $\left|V_{f}\right| \geq \frac{q^{2}}{\# f^{*}(x, y)} \geq \frac{q^{2}}{c q} \geq \frac{q}{c}$.
Lemma 2. Let $d>1$ denote an integer with prime factorization given by

$$
d=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}} .
$$

For $(t, s)=1$, let $\operatorname{ord}_{t}(s)$ denote the multiplicative order of s modulo t. Assume $\operatorname{ord}_{p i} a_{i}(q)=\emptyset\left(p_{i}^{a_{i}}\right)=p_{i}^{a_{i}}-p_{i}^{a_{i}-1}$ for $i=1,2, \ldots, r$. Let D denote a divisor of d and write

$$
D=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{b_{r}},
$$

where $0 \leq b_{i} \leq a_{i}$ for $i=1,2, \ldots, r$. Then

$$
\operatorname{ord}_{D}(q)=\operatorname{lcm}\left(\emptyset\left(p_{1}^{b_{1}}\right), \emptyset\left(p_{2}^{b_{2}}\right), \ldots, \emptyset\left(p_{r}^{b_{r}}\right)\right)
$$

Proof. Assume $\operatorname{ord}_{p_{i} b_{i}}(q)=e<\emptyset\left(p_{i}^{b_{i}}\right)$ with $1 \leq b_{i}<a_{i}$. So $q^{e} \equiv 1$ $\bmod p_{i}^{b_{i}}$ and then $1+q^{e}+q^{2 e}+\cdots+q^{\left(p_{i}-1\right) e} \equiv 0 \bmod p_{i}$. Therefore,

$$
\begin{gathered}
q^{p_{i} e}-1=\left(q^{e}-1\right)\left(1+q^{e}+\cdots+q^{\left(p_{i}-1\right) e}\right) \\
\equiv 0 \text { and } p_{i}^{b_{i}+1}
\end{gathered}
$$

where $p_{i} e<p_{i} \emptyset\left(p_{i}^{b_{i}}\right)=p_{i}\left(p_{i}^{b_{i}}-p_{i}^{b_{i}-1}\right)=\emptyset\left(p_{i}^{b_{i}+1}\right)$. Thus, an induction argument gives

$$
q^{c} \equiv 1 \bmod p_{i}^{a_{i}}
$$

for some positive integer c such that $c<\emptyset\left(p_{i}^{a_{i}}\right)$, a contradiction to the fact that $\operatorname{ord}_{p_{i} a_{i}}(q)=\emptyset\left(p_{i}^{a_{i}}\right)$. Therefore, $\operatorname{ord}_{p_{i}^{b_{i}}}(q)=\emptyset\left(p_{i}^{b_{i}}\right)$ for $1 \leq b_{i} \leq a_{i}$ and i $=1,2, \ldots, r$. So,

$$
\operatorname{ord}_{D}(q)=1 \mathrm{~cm}\left(\emptyset\left(p_{1}^{b_{1}}\right), \emptyset\left(p_{2}^{b_{2}}\right), \ldots, \emptyset\left(p_{r}^{b_{r}}\right)\right)
$$

We are ready for the theorem:
Theorem 3. Let $f(x)$ be a monic polynomial over F_{q} of degree d. Assume $(d, q)=1$ and $d^{4}<q$. Let the prime factorization of d be given by

$$
d=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}
$$

Assume $\operatorname{ord}_{p_{i} a_{i}}(q)=\emptyset\left(p_{i}^{a_{i}}\right)=p_{i}^{a_{i}}-p_{i}^{a_{i}-1}$ for $i=1,2, \ldots, r$. Then

$$
\left|V_{f}\right| \geq \frac{q}{1+\sum_{D \mid d} \emptyset(D) / \operatorname{lcm}\left(\emptyset\left(p_{1}^{b_{1}}\right), \ldots, \emptyset\left(p_{r}^{b_{r}}\right)\right)}
$$

where $D=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{b_{r}}$.
Proof. Let the factorization of $f^{*}(x, y)=f(x)-f(y)$ into irreducibles over F_{q} be given by

$$
f^{*}(x, y)=\prod_{i=1}^{s} f_{i}(x, y)
$$

Let

$$
f_{i}(x, y)=\prod_{j=0}^{n_{i}} h_{i j}(x, y)
$$

be the homogeneous decomposition of $f_{i}(x, y)$ so that $h_{i j}(x, y)$ is homogenous of degree j. So, it is clear that

$$
x^{d}-y^{d}=\prod_{i=1}^{s} h_{i n_{i}} .
$$

We also have, since $(d, q)=1$, that $x^{d}-y^{d}$ is a product of $\emptyset(d)$ polynomials,

$$
x^{d}-y^{d}=\prod_{D \backslash d} \Phi_{D}(x, y)
$$

where $\Phi_{D}(x, y)$ factors into $\emptyset(D) / \operatorname{ord}_{D}(q)$ distinct irreducibles polynomials in $F_{q}[x, y]$ of the same degree $\operatorname{ord}_{D}(q)$. Therefore

$$
s \leq \sum_{D \mid d} \frac{\emptyset(D)}{\operatorname{ord}_{D}(q)}
$$

Now, if $f_{i}(x, y)$ is absolutely irreducible over the field F_{q}, then

$$
\# f_{i}(x, y) \leq\left(d_{i}-1\right)\left(d_{i}-2\right) \sqrt{q}+d_{i}^{2}+q \quad[2, \text { pp.330-331] }
$$

where $d_{i}=\operatorname{deg}\left(f_{i}(x, y)\right)$.
For $f_{i}(x, y)$ not absolutely irreducible, the situation is simpler and we estimate

$$
\# f_{i}(x, y) \leq d_{i}^{2}
$$

Therefore, if $d<\sqrt[4]{q}$ we obtain:

$$
\begin{aligned}
\# f^{*}(x, y) & \leq \sum_{i=1}^{s} \# f_{i}(x, y) \\
& \leq\left\{\sum_{i=1}^{s}\left(d_{i}-1\right)\left(d_{i}-2\right) \sqrt{q}+d_{i}^{2}\right\}+s q \\
& \leq \sum_{i=1}^{s} d_{i}^{2} \sqrt{q}+s q \\
& \leq(1+s) q .
\end{aligned}
$$

Hence, combining with Lemmas 1 and 2 we obtain:

$$
\begin{aligned}
\left|V_{f}\right| & \geq \frac{q}{1+s} \\
& =\frac{q}{1+\sum_{D_{b} d} \emptyset(D) / \operatorname{lcm}\left(\emptyset\left(p_{1}^{b_{1}}\right), \ldots, \emptyset\left(p_{r}^{b_{r}}\right)\right)}
\end{aligned}
$$

where $D=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{D_{b} d}$.
Corollary 4. With notation and assumptions as in Theorem 3, if $r=a_{1}=1$, then

$$
\left|V_{f}\right| \geq \frac{q}{3}
$$

References

[1] L. Carlitz: On the numbers of distinct values of a polynomial with coefficients in a finite field. Proc. Japan Acad., 31, 119-120 (1955).
[2] R. Lidl and H. Niederreiter: Finite Fields. Encyclo. Math. and Appls., vol. 20, Addison-Wesley, Reading, Mass. (1983) (Now distributed by Cambridge Univ. Press).
[3] S. Uchiyama: Sur le nombre des valeurs distinctes d'un polynôme à coefficients dans un corps fini. Proc. Japan Acad., 30, 930-933 (1954).

