81. On the Cardinality of Value Set of Polynomials with Coefficients in a Finite Field

By Javier GOMEZ-CALDERON

The Pennsylvania State University (Communicated by Shokichi, IYANAGA, M. J. A., Dec. 14, 1992)

1. Introduction. Let F_q denote the finite field of order q where q is a prime power. If f(x) is a polynomial of positive degree d over F_q , let $V_f = \{f(x) : x \in F_q\}$ denote the image or value set of f(x) and $|V_f|$ denote the cardinality of V_f . Since f(x) cannot assume a given value more than d times, it is clear that

$$\left[\frac{q-1}{d}\right]+1\leq |V_f|\leq q,$$

where [x] denotes the greatest integer $\leq x$. Uchiyama [3] has proved that if F_q is of sufficiently large characteristic and

$$\frac{f(x) - f(y)}{x - y}$$

is absolutely irreducible, then $|V_f| > \frac{q}{2}$ for all $d \ge 4$. Carlitz [1] has also proved that $|V_f| > \frac{q}{2}$ "on the average." More precisely, Carlitz proved that $\sum_{q_1 \in F_q} |V_f| \ge \frac{q^2}{2}$,

where the summation is over the coefficients of the first degree term in f(x). In this note we determine a lower bound for $|V_f|$ when (d, q) = 1, $d^4 < q$ and the multiplicative order of q modulo $p_i^{a_i}$ is $p_i^{a_i} - p_i^{a_i-1}$ for all prime power $p_i^{a_i} || d$. We prove that

$$|V_{f}| \geq \frac{q}{1 + \sum_{D \mid d} \emptyset(D) / \operatorname{lcm}(\emptyset(p_{1}^{b_{1}}), \ldots, \emptyset(p_{r}^{b_{r}})))},$$

where $D = p_1^{b_1} p_2^{b_2} \cdots p_r^{b_r}$ and \emptyset (D) denotes the Euler Phi Function.

2. Theorem and proof. We will need the following two lemmas.

Lemma 1. Let f(x) be a monic polynomial over F_q of degree d < q. Let # $f^*(x, y)$ denote the number of solutions (x, y) in $F_q \times F_q$ of the equation $f^*(x, y) = f(x) - f(y) = 0$. Assume

$$\#f^*(x, y) \leq c q$$

for some constant c, $1 \le c \le d$. Then

$$\frac{q}{c} \le |V_f|.$$

Proof. Let R_i denote the number of images of f(x) that occur exactly i times as x ranges over F_q , not counting multiplicities. Then

$$\sum_{i=1}^{d} i R_i = q, \quad |V_f| = \sum_{i=1}^{d} R_i, \text{ and } \# f^*(x, y) = \sum_{i=1}^{d} i^2 R_i.$$

Hence, we can apply Cauchy-Schwarz inequality to obtain

$$q^{2} = \left(\sum_{i=1}^{d} i R_{i}\right)^{2}$$

$$\leq \left(\sum_{i=1}^{d} i^{2} R_{i}\right) \left(\sum_{i=1}^{d} R_{i}\right)$$

$$\leq \# f^{*}(x, y) \mid V_{f} \mid.$$

$$\frac{q^{2}}{\# f^{*}(x, y)} \geq \frac{q^{2}}{Cq} \geq \frac{q}{C}.$$

Therefore, $|V_f| \ge \frac{q^2}{\#f^*(x, y)} \ge \frac{q^2}{cq} \ge \frac{q}{c}.$

Lemma 2. Let d > 1 denote an integer with prime factorization given by $d = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$.

For (t, s) = 1, let $\operatorname{ord}_{t}(s)$ denote the multiplicative order of s modulo t. Assume $\operatorname{ord}_{p_{i}a_{i}}(q) = \emptyset(p_{i}^{a_{i}}) = p_{i}^{a_{i}} - p_{i}^{a_{i}-1}$ for $i = 1, 2, \ldots, r$. Let D denote a divisor of d and write

$$D=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}$$

where $0 \leq b_i \leq a_i$ for i = 1, 2, ..., r. Then $\operatorname{ord}_D(q) = \operatorname{lcm}(\emptyset(p_1^{b_1}), \emptyset(p_2^{b_2}), ..., \emptyset(p_r^{b_r})).$

Proof. Assume $\operatorname{ord}_{p_i^{b_i}}(q) = e < \emptyset(p_i^{b_i})$ with $1 \le b_i < a_i$. So $q^e \equiv 1 \mod p_i^{b_i}$ and then $1 + q^e + q^{2e} + \cdots + q^{(b_i-1)e} \equiv 0 \mod p_i$. Therefore,

$$q^{p_i^e} - 1 = (q^e - 1)(1 + q^e + \dots + q^{(p_i - 1)e})$$

= 0 and $p_i^{b_i + 1}$,

where $p_i e < p_i \emptyset(p_i^{b_i}) = p_i(p_i^{b_i} - p_i^{b_i^{-1}}) = \emptyset(p_i^{b_i^{+1}})$. Thus, an induction argument gives

$$q^c \equiv 1 \mod p_i^{a_i}$$

for some positive integer c such that $c < \emptyset(p_i^{a_i})$, a contradiction to the fact that $\operatorname{ord}_{p_i^{a_i}}(q) = \emptyset(p_i^{a_i})$. Therefore, $\operatorname{ord}_{p_i^{b_i}}(q) = \emptyset(p_i^{b_i})$ for $1 \le b_i \le a_i$ and $i = 1, 2, \ldots, r$. So,

$$\operatorname{ord}_{D}(q) = \operatorname{lcm}(\emptyset(p_{1}^{b_{1}}), \emptyset(p_{2}^{b_{2}}), \dots, \emptyset(p_{r}^{b_{r}}))$$

We are ready for the theorem :

Theorem 3. Let f(x) be a monic polynomial over F_q of degree d. Assume (d, q) = 1 and $d^4 < q$. Let the prime factorization of d be given by $d = b^{a_1} b^{a_2} \cdots b^{a_r}$

$$a = p_{1} \cdot p_{2} \cdot \cdots \cdot p_{r} \cdot .$$

Assume $\operatorname{ord}_{p_{i}^{a_{i}}}(q) = \emptyset(p_{i}^{a_{i}}) = p_{i}^{a_{i}} - p_{i}^{a_{i}-1} \text{ for } i = 1, 2, \dots, r.$ Then

$$|V_{f}| \geq \frac{q}{1 + \sum_{D \mid d} \emptyset(D) / \operatorname{lcm}(\emptyset(p_{1}^{b_{1}}), \dots, \emptyset(p_{r}^{b_{r}})))},$$

where $D = p_1^{b_1} p_2^{b_2} \cdots p_r^{b_r}$.

Proof. Let the factorization of $f^*(x, y) = f(x) - f(y)$ into irreducibles over F_q be given by

$$f^{*}(x, y) = \prod_{i=1}^{s} f_{i}(x, y).$$

Let

$$f_i(x, y) = \prod_{j=0}^{n_i} h_{ij}(x, y)$$

I. GOMEZ-CALDERON

[Vol. 68(A),

be the homogeneous decomposition of $f_i(x, y)$ so that $h_{ii}(x, y)$ is homogenous of degree j. So, it is clear that

$$x^d - y^d = \prod_{i=1}^s h_{in_i}.$$

We also have, since (d, q) = 1, that $x^d - y^d$ is a product of $\emptyset(d)$ polynomials,

$$x^{d} - y^{d} = \prod_{D \mid d} \Phi_{D}(x, y)$$

where $\Phi_D(x, y)$ factors into $\emptyset(D)/\mathrm{ord}_D(q)$ distinct irreducibles polynomials in $F_q[x, y]$ of the same degree $\operatorname{ord}_D(q)$. Therefore

$$s \leq \sum_{D \mid d} \frac{\emptyset(D)}{\operatorname{ord}_D(q)}.$$

Now, if $f_i(x, y)$ is absolutely irreducible over the field F_q , then $\# f_i(x, y) \le (d_i - 1)(d_i - 2)\sqrt{q} + d_i^2 + q$ [2, pp.330-331] where $d_i = \deg(f_i(x, y))$.

For $f_i(x, y)$ not absolutely irreducible, the situation is simpler and we estimate

$$#f_i(x, y) \leq d_i^2.$$

Therefore, if $d < \sqrt[4]{q}$ we obtain:

$$\begin{aligned} \#f^*(x, y) &\leq \sum_{i=1}^{s} \#f_i(x, y) \\ &\leq \left\{ \sum_{i=1}^{s} (d_i - 1) (d_i - 2) \sqrt{q} + d_i^2 \right\} + sq \\ &\leq \sum_{i=1}^{s} d_i^2 \sqrt{q} + sq \\ &\leq (1 + s)q. \end{aligned}$$

Hence, combining with Lemmas 1 and 2 we obtain:

$$|V_{f}| \geq \frac{q}{1+s}$$

$$= \frac{q}{1+\sum_{p_{1} \neq p_{2}^{b_{1}} \cdots p_{r}^{D_{r} \neq q}} (D)/\operatorname{lcm}\left(\emptyset\left(p_{1}^{b_{1}}\right), \ldots, \vartheta\left(p_{r}^{b_{r}}\right)\right)},$$
re $D = p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{D_{r} \neq q}$.

whe

Corollary 4. With notation and assumptions as in Theorem 3, if $r = a_1 = 1$, then

$$|V_f| \geq \frac{q}{3}.$$

References

- [1] L. Carlitz: On the numbers of distinct values of a polynomial with coefficients in a finite field. Proc. Japan Acad., 31, 119-120 (1955).
- [2] R. Lidl and H. Niederreiter: Finite Fields. Encyclo. Math. and Appls., vol. 20, Addison-Wesley, Reading, Mass. (1983) (Now distributed by Cambridge Univ. Press).
- [3] S. Uchiyama: Sur le nombre des valeurs distinctes d'un polynôme à coefficients dans un corps fini. Proc. Japan Acad., 30, 930-933 (1954).