80. Primitive π-regular Semigroups

By Stojan Bogdanović and Miroslav ĆIrić
University of Niš, Yugoslavia
(Communicated by Shokichi IYANAGA, M. J. A., Dec. 14, 1992)

Abstract

In this note we investigate the structure of π-regular semigroups, the nonzero idempotents of which are primitive.

Various characterizations for primitive regular semigroups have been obtained by T. E. Hall [4], G. Lallement and M. Petrich [6], G. B. Preston [7], O. Steinfeld [8] and P. S. Venkatesan [9], [10](this appeared also in the book of A. H. Clifford and G. B. Preston [3]). J. Fountain [5] considered primitive abundant semigroups. In this paper we consider primitive π-regular semigroups and in this way we generalize the previous results for primitive regular semigroups.

Throughout this paper, \boldsymbol{Z}^{+}will denote the set of all positive integers. If S is a semigroup with zero 0 , we will write $S=S^{0}$ and $S^{*}=S-\{0\}$.

An element a of a semigroup $S=S^{0}$ is a nilpotent if there exists $n \in \boldsymbol{Z}^{+}$such that $a^{n}=0$. The set of all nilpotents of a semigoup S is denoted by $\operatorname{Nil}(S)$. A semigroup S is a nil-semigroup if $S=\operatorname{Nil}(S)$. An ideal I of a semigroup $S=S^{0}$ is a nil-ideal of S if I is a nil-semigroup. An ideal extension S of a semigroup K is a nil-extension of K if S / K is a nil-semigroup. By $R^{*}(S)$ we denote Clifford's radical of a semigroup $S=S^{0}$, i.e. the union of all nil-ideals of S (it is the greatest nil-ideal of S).

A semigroup S is π-regular (completely π-regular) if for every $a \in S$ there exist $n \in \boldsymbol{Z}^{+}$and $x \in S$ such that $a^{n}=a^{n} x a^{n}\left(a^{n}=a^{n} x a^{n}\right.$ and $a^{n} x=$ $x a^{n}$). A semigroup S is π-inverse if S is π-vegular and every regular element of S has a unique inverse. If A is a nonempty subset of a semigroup S, then by $\operatorname{Reg}(A)(E(A))$ we denote the set of all regular elements (idempotents) of A. If e is an idempotent of a semigroup S then we denote by G_{e} the maximal subgroup of S with e as its identity. A nonzero idempotent e of a semigroup $S=S^{0}$ is primitive if for every $f \in E\left(S^{*}\right), f=e f=f e \Rightarrow f=e$, i.e. if e is minimal in $E\left(S^{*}\right)$, relative to the partial order on $E\left(S^{*}\right)$. A semigroup $S=$ S^{0} is primitive if all of its nonzero idempotents are primitive.

For undefined notion and notations we refer to [2] and [3].
Lemma 1. Let $S=S^{0}$ be a semigroup. If $e S(S e)$ is a 0 -minimal right (left) ideal of S generated by a nonzero idempotent e, then e is primitive.

Proof. For a proof see Lemma 6.38 [3].
The converse of the previous lemma is not true. For example, in the semigroup $S=\langle a, e, 0| a^{2}=0, e^{2}=e, a e=0, e a=a, a 0=0 a=e 0=$

[^0]$\left.0 e=0^{2}=0\right\rangle, e$ is a primitive idempotent. But $e S=S$, so $e S$ is not a 0 -minimal right ideal of S.

Now we introduce the following
Definition 1. A nonzero idempotent e of a semigroup $S=S^{0}$ which generates 0 -minimal left' (right) ideal is called left (right) completely primitive. An idempotent e is completely primitive if it is both left and right completely primitive.

A semigroup S is (left, right) completely primitive if all of its nonzero idempotents are (left, right) completely primitive.

For regular semigroups we have the following
Lemma 2 [3]. Let $S=S^{0}$ be a regular semigroup and let $e \in E\left(S^{*}\right)$. Then e is primitive if and only if $e S(S e)$ is a 0 -minimal left (right) ideal of S.

Therefore, in regular semigroups the notions "primitive" and "completely primitive" coincide.

Lemma 3. Let $S=S^{0}$ be a primitive π-regular semigroup. Then S is completely π-regular with maximal subgroups given by

$$
G_{e}=e S e-N
$$

where $e \in E\left(S^{*}\right)$ and $N=\operatorname{Nil}(S)$.
Proof. For a proof see Lemma 1 [1].
Theorem 1. The following conditions on a semigroup $S=S^{0}$ are equivalent:
(i) S is a nil-extension of a primitive regular semigroup;
(ii) S is a completely primitive π-regular semigroup;
(iii) S is completely π-regular and $S e S$ is a 0 -minimal ideal of S for every $e \in E\left(S^{*}\right)$;
(iv) S is a primitive π-regular semigroup and $R^{*}(S E(S) S)=\{0\}$.

Proof. (i) \Rightarrow (ii). Let S be a nil-extension of a primitive regular semigroup T. Assume $e \in E\left(S^{*}\right)$. Then

$$
e S=e^{2} S \subseteq e T S \subseteq e T \subseteq e S
$$

whence $e S=e T$. By Lemma 2 we obtain that $e T$ is a 0 -minimal right ideal of T, and of S also. Therefore, S is right completely primitive. Similarly it can be proved that S is left completely primitive. It is clear that S is π-regular. Thus, (ii) holds.
(ii) \Rightarrow (i). Let S be a π-regular completely primitive semigroup. Let

$$
R=\bigcup_{e \in E} e S, \quad L=\bigcup_{e \in E} S e, \quad E=E(S)
$$

It is easy to verify that R is a right ideal and L is a left ideal of S. Since $e S \subseteq R, S e \subseteq L$, for every $e \in E\left(S^{*}\right)$, then by hypothesis we obtain that $e S=e R$ and $S e=L e$, whence

$$
R=\bigcup_{e \in E} e R, \quad L=\bigcup_{e \in E} L e .
$$

By Theorem $6.39[3]$ it follows that R and L are primitive regular semigroups. Thus, $R, L \subseteq \operatorname{Reg}(S)$. Assume $a \in \operatorname{Reg}\left(S^{*}\right)$. Then $a=e a f$ for some $e, f \in E\left(S^{*}\right)$, whence $a \in e S \cap S f \subseteq R \cap L$. Thus $\operatorname{Reg}(S) \subseteq$ $R \cap L$. Therefore, $\operatorname{Reg}(S)=R=L$ is an ideal of S, and since for every $a \in S$ there exists $n \in \boldsymbol{Z}^{+}$such that $a^{n} \in \operatorname{Reg}(S)$, we have that S is a
nil-extension of a primitive regular semigroup.
(i) \Rightarrow (iv). Let S be a nil-extension of a regular primitive semigroup T. It is clear that S is primitive and π-regular and that $T=S E(S) S$. Since T has not nonzero nil-ideals, we have $R^{*}(S E(S) S)=R^{*}(T)=\{0\}$.
(iv) \Rightarrow (iii). Let S be a primitive π-regular semigroup and let $R^{*}(S E(S) S)=\{0\}$. Assume $e \in E\left(S^{*}\right)$. Let I be a nonzero ideal of S contained in $S e S$. Then I is an ideal of $S E(S) S$, so by the hypothesis we obtain that I is not a nil-ideal, so there exists $a \in I-\operatorname{Nil}(S)$. Moreover, there exists $n \in \boldsymbol{Z}^{+}$and $x \in S$ such that $a^{n}=a^{n} x a^{n}$. Let $f=a^{n} x$. Then $f \in E\left(S^{*}\right)$ and by $a^{n} \in I$ it follows that $f \in I \subseteq S e S$, so $f=$ uev for some $u, v \in S$. Let $g=e v f u e$. Then $g^{2}=g=g e=e g$ and $u g v=f$, so $g \neq 0$. By the primitivity of e we obtain that $g=e$, whence

$$
e=e v f u e \in S f S \subseteq S I S \subseteq I
$$

Thus $S e S \subseteq I$, i.e. $S e S=I$. Therefore, $S e S$ is a 0 -minimal ideal of S.
By Lemma 3 it follows that S is completely π-regular.
(iii) \Rightarrow (i). Let (iii) hold and let

$$
T=S E(S) S=\bigcup_{\rho \in E} S e S, \quad E=E(S)
$$

For $a \in \operatorname{Reg}\left(S^{*}\right)$ we have that $a \stackrel{e \in E}{=} e a$ for some $e \in E\left(S^{*}\right)$, so $a=e a \in$ $S e S \subseteq T$, Thus, $\operatorname{Reg}(S) \subseteq T$. Since S is completely π-regular, then for all $e \in E\left(S^{*}\right), S e S$ is also completely π-regular, so we obtain by Munn's theorem ([2], Theorem 2.55) that $S e S$ is a completely 0 -simple semigroup. Thus, $T \subseteq \operatorname{Reg}(S)$, i.e. $\operatorname{Reg}(S)=T$. Therefore, S is a nil-extension of a primitive regular semigroup $T=\operatorname{Reg}(S)$.

Lemma 4. Let $S=S^{0}$ be a semigroup. Then

$$
R^{*}\left(S / R^{*}(S)\right)=\{0\}
$$

Proof. Let $S / R^{*}(S)=Q$, Let $\varphi: S \rightarrow Q$ be the natural homomorphism and let I be a nil-ideal of Q. Assume $J=\{x \in S \mid \varphi(x) \in I\}$. Then it is easy to verify that J is a nil-ideal of S, whence $J \subseteq R^{*}(S)$, so I is the zero ideal of Q.

We can now prove the structural theorem for primitive regular semigroups :

Theorem 2. The following conditions on a semigroup S are equivalent:
(i) S is a primitive π-regular semigroup;
(ii) S is an ideal extension of a nil-semigroup by a completely primitive π-regular semigoup;
(iii) S is a nil-extension of a semigroup which is an ideal extension of a nil-semigroup by a primitive regular semigroup.

Proof. (i) \Rightarrow (ii). Let S be a primitive π-regular semigroup. Then it is clear that $S / R^{*}(S)$ is a primitive π-regular semigroup, so by Lemma 4 and Theorem 1, we obtain that $S / R^{*}(S)$ is compeletely primitive. Thus, (ii) holds.
(ii) \Rightarrow (i). Let S be an ideal extension of a nil-semigroup T by a completely primitive π-regular semigroup Q. Let us identify partial semigroups $S-T$ and Q^{*}. Assume $a \in S$. If $\langle a\rangle \subseteq S-T$, then $\langle a\rangle \subseteq Q^{*}$ in Q, so there exists $n \in \boldsymbol{Z}^{+}$and $x \in Q^{*}$ such that $a^{n}=a^{n} x a^{n}$ in Q, whence $a^{n}=$
$a^{n} x a^{n}$ in S. If $\langle a\rangle \cap T \neq \phi$, then a is a nilpotent, so it is π-regular. It is clear that S is primitive. Therefore, S is a primitive π-regular semigroup.
(i) \Rightarrow (iii). Let S be a primitive π-regular semigroup and let $K=$ $S E S$, where $E=E(S)$. Since $\operatorname{Reg}(S) \subseteq K$ and S is π-regular, then S is a nil-extension of K. Let $R=R^{*}(K), Q=K / R$ and $E^{\prime}=E(Q)$. Let $x \in Q$. Then $x=\varphi(a)$ for some $a \in K$ and φ is the natural homomorphism of K onto Q. Since

$$
K E K \subseteq S E S \subseteq S E^{2} E E^{2} S \subseteq(S E S) E(S E S)=K E K
$$

thus $K=K E K$. We have $a=u e v$ for some $u, v \in K, e \in E$, whence

$$
x=\varphi(a)=\varphi(u) \varphi(e) \varphi(v) \in Q E^{\prime} Q
$$

Hence $Q=Q E^{\prime} Q$. Since $R^{*}(Q)=R^{*}\left(Q E^{\prime} Q\right)=0$ and Q is primitive π-regular, it follows from the proof of Theorem 1 that Q is a primitive regular semigroup.
(iii) \Rightarrow (i). Let S be a nil-extension of a semigroup T and let T be an ideal extension of a nil-semigroup R by a primitive regular semigroup Q. Since we can identify partial semigroups $E(S)=E(T)$ and $E(Q)$, so S is primitive. It is clear that S is π-regular. Thus (i) holds.

Corollary 1. A semigroup $S=S^{0}$ is a completely primitive π-inverse semigroup if and only if S is a nil-extension of a primitive inverse semigroup.

Corollary 2. The following conditions on a semigroup S are equivalent:
(i) S is a primitive π-inverse semigroup;
(ii) S is an ideal extension of a nil-semigroup by a completely primitive π-inverse semigroup;
(iii) S is a nil-extension of a semigroup which is an ideal extension of a nil-semigroup by a primitive inverse semigroup.

References

[1] S. Bogdanović and S. Milić: A nil-extension of a completely simple semigroup. Publ. Inst. Math., 36(50), 45-50 (1984).
[2] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups. I. Amer. Math. Soc. (1961).
[3] -: The algebraic theory of semigroups. II. ibid. (1967).
[4] T. Hall: On the natural order of \mathscr{T}-class and of idempotents in a regular semigroup. Glasgow Math. J., 11, 167-168 (1970).
[5] J. Fountain: Abundant semigroups. Proc. London Math. Soc., 44(3), 103-129 (1982).
[6] G. Lallement and M. Petrich: Décomposition I-matricielles d'un demigroupe. J. Math. Pures Appl., 45, 67-117 (1966).
[7] G. B. Preston: Matrix representations of inverse semigroups. J. Australian Math. Soc., 9, 29-61 (1969).
[8] O. Steinfeld: On semigroups which are unions of completely 0 -simple semigroups. Czech. Math. J. , 16, 63-69 (1966).
[9] P. S. Venkatesan: On a class of inverse semigroups. Amer. J. Math., 84, 578-582 (1962).
[10] -: On decomposition of semigroups with zero. Math. Zeitsch., 92, 164-174 (1966).

[^0]: Supported by Grant 0401A of RFNS through Math. Inst. SANU.

