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Let g be a finite-dimensional complex Lie algebra, and U (g) be the uni-
versal enveloping algebra of g. In this paper, we give simple and useful
criteria for finitely generated U(g)-modules H to remain finite under the.
restriction to subalgebras A c U (g), by using the algebraic varieties in fl
associated to H and A. It is shown that, besides the finiteness, the
U (g)-modules H satisfying our criteria preserve some important invariants
under the restriction.

Applying the criteria to Harish-Chandra modules of a semisimple Lie
algebra fl, we specify among other things, a large class of Lie subalgebras of
g on which all the Harish-Chandra modules are of finite type. This allows us
to extend largely the finite multiplicity theorems for induced representations
of a semisimple Lie group, established in our earlier work [8].

1. Associated varieties for finitely generated U (g) -modules. We begin
with defining three important invariants" the associated variety, the Bern-
stein degree and the Gelfand-Kirillov dimension, of finitely generated mod-
ules over a complex Lie algebra (cf. [6]).

Let V be a finite-dimensional complex vector space. We denote by S (V)
(k=0 Sk(V) the symmetric algebra of V, where S(V) is the

homogeneous component of S (V) of degree k. Let M (=o M be a finite-
ly generated, nonzero, graded S(V)-module, on which S(V) acts in such a
way as S(V) M, M+, (k, k’ >_ 0). Then each homogeneous component

Mk of M is finite-dimensional.
Proposition 1 (Hilbert-Serre, see [9, Ch. VII, 12]). (1) There exists a

unique polynomial qM(q) in q such that qM(q) dim(Mo 4- M 4- 4- Ma)
for sufficiently large q.

(2) Let (c(M)/d(M)!)qa(M)
be the leading term of PM. Then c(M) is a

positive integer, and the degree d(M) of this polynomial coincides with the
dimension of the associated algebraic cone
(1.1) p(M) {2 V* If(/) 0 for allf Anns(v)M}.
Here, Anns(v)M denotes the annihilator of M in S (V), V* the dual space of V,
and S (V) is identified with the polynomial ring over V* in the canonical way.

For a finite-demensional complex Lie algebra fl, let (Ug())g=o,... denote
the natural filtration of enveloping algebra U (g) of , where Uk() is the
subspace of U() generated by elements X...X with m _< k and X (1
_< j _< m). We identify the associated commutative ring gr U(fl)-l kO
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Uk()/Uk_l() (U_I() "= (0)) with the symmetric algebra S(fi)- @k>o
Sk(fl) of in the canonical way.

Now let H be a finitely generated, non-zero U()-module. Take a
finite-dimensional generating subspace Ho of H" H U()Ho. Setting

H U()Ho for k 1,2, and (0), we get a finitely generated,
graded S ()-module
(1.2) M gr(H; Ho) "= @ M with M H/H_.

The variety p(M) the integers c(M) and d(M) defined for this
M as in Proposition 1, are independent of the choice of a generating sub-
space Ho. These three invariants of H are called respectively the associated
variety, the Bernstein degree and the Gelfand-Kirillov dimension of H. We de-
note p(M), c(M) and d(M) respectively by (fi;H), c(fi;H) and
d (fi; H), emphasizing that H is being considered as a U (fi)-module.

2. Restriction of U (fi)-modules to subalgebras. Let A be a subalgebra
of U() containing the identity element 1 U(). We denote by R the
graded subalgebra of S(fi) gr U(fi) associated to A" R grA’= @ao
A/A_ with A A U(). We say that a finitely generated U(fi)-
module H has the good restriction to A if there exists a finite-dimensional
generating subspace Ho of H for which the associated graded
S ()-module gr(H; Ho) is finitely generated over R.

The following theorem characterizes, by means of the associated
varieties, the U (fi)-modules H having the good restriction to A.

Theorem 1. (1) The restriction ofH to A is good whenever the condition

(2.1) (;H) R+ (0)
on algebraic varieties in is satisfied. Here R+ { If () 0 for all f

R+} denotes the variety in associated to the maximal graded ideal R+ :=
>o(R S(fi)) ofR grA.

(2) Conversely, if R is Noetherian and if H (0) admits the good restric-
tion to A, one necessarily has (2.1).

Let n be a Lie subalgebra of . Applying this theorem to the case
A U(n) (R S(n) is obviously Noetherian), we obtain immediately the
following

Corollary 1. A finitely generated U ()-module H (0) has the good re-
striction to U (n) if and only if p( H) (0) holds, where nX, X> OforallX } is theorthogonalof in

The U ()-modules admitting the good restriction enjoy nice properties
as follows.

Theorem 2. Suppose that H has the good restriction to a subalgebra
A U ().

(1) H is finitely generated as an A- module.
(2) If A U () for a Lie subalgebra of , then H is of finite type over

U (), and so one can define the associated variety p(n; H), Bernstein degree
c(n; H), and Gelfand-Kirillov dimension d(n; H) of H as a U (n)-module as

well as those as a U ()-module. These two kinds of quantities have the relations
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(2.2) c(fl; H) c(n; H), d(fl; H) d(n; H),
and hence
(2.3) dim u (fl H) dim u( H).
Moreover one has
(2.4) p*(fl H) c (n; H),
where p* * n*-- denotes the restriction map of linear forms.

We can give two interesting consequences of the above theorems, as fol-
lows.

Corollary 2. Let n be a Lie subalgebra of , and H be a finitely generated
U ()-module satisfying the condition (;H) 71 n

+/- (0). Then, the
n-homology groups Hk(n, H) (k 0,1,...) ofH (see e.g., [2] for the definition)
are all finite- demensional.

Corollary 3. If a finitely generated U ()-module H has the good restric-
tion to U (n), the Gelfand-Kirillov dimension d ( H) of H does not exceed dim
n.

3. Nilpotent variety W (p) and good restriction of Harish-Chandra mod-
ules. Now, assume to be semisimple, and let p be a symmetric de-
composition of determined by an involutive automorphism of . We consid-
er the category C(t) of finitely generated U()-modules H on which the
subalgebra U (t)Z () acts locally finitely, where Z () denotes the center of
U (). Such an H in C(f) is called a Harish-Chandra (, f)-module. We re-
gard the varieties v(; H) c as algebraic cones in by identifying
with through the Killing form of .

Lemma. The associated variety (; H) of any Harish-Chandra
(,t)-module H is contained in the variety W(p) of all nilpotent elements of p.
Moreover, there exists an in C () such that (; coincides with the whole
().

Theorem 1 together with this lemma yields the following result.
Theorem 3. All the Harish-Chandra (,f)-modules have the good restric-

tion to a subalgebra A of U () if W(p) R #

+ (0) holds forR-- grA. The
converse is also true provided that R is Noetherian.

4. Large Lie subalgebras of a real semisimple Lie algebra. Let o be a
real semisimple Lie algebra, and o- fo @ Po be the Cartan decomposition of

o determined by an involution 0. Conventionally, we write D (c fl) for the
complexification of a real vector subspace Do of flo by dropping the subscript
0

A Lie subalgebra no of o is said to be large in o if there exists an ele-
ment x Int(flo) for which every Harish-Chandra (fl,f)-module has the
good restiction to U (x" n). By Theorem 3, this amounts to a simple geomet-
ric condition"
(4.1) (x.n)" W(p) (0) for some x Int(o).
Here Int(o) denotes the group of inner automorphisms of rio. Notice that the
largeness of a Lie subalgebra does not depend on the choice of a to.

We now specify many of large Lie subalgebras of 1o.
At first, here are two kinds of typical large Lie subalgebras.
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Proposition 2. (1) Let 90 fo -+- %,o -+" U,o be an Iwasawa decomposition

of o. Then the maximal nilpotent Lie subalgebra u,n,o of o is large.
(2) The symmetrizing Lie subalgebra Do {X o (X X} is large in

o for any involutive automorphism of o.
The claim (1), together with Theorem 3, covers the results of

Casselman-Osborne [3, Th.2.3] and Joseph [4, II, 5.6] on the restriction of
Harish-Chandra modules to u. The second one allows us to deduce the fi-
nite multiplicity theorem of van den Ban, for the quasi-regular representa-

Ltion on (G/H), associated to a semisimple symmetric space G/H (cf. [8]).
Now let qo be any parabolic subalgebra of o, and qo lo -t- uo with o

qo 1 0qo, be its Levi decomposition. Since the Levi component [o is reductive,
one can define large Lie subalgebras of lo just in the same way.

The largeness of Lie subalgebras is preserved by parabolic induction.
Proposition 3. If Do is a large Lie subalgebra of o, the semidirect product

Lie subalgebra Do + Uo is large in o.
Let q,n,o----mo + %,o + Um,o be a minimal parabolic subalgebra of o,

where mo denotes the centralizer of %,o in to. We say that a Lie subalgebra
no of go is quasi-spherical if there exists a z Int(o) such that z’no

--flo. This is equivalent to saying that, if G is a connected Lie group with

Lie algebra o, the analytic subgroup of G corresponding to no has an open
orbit on the flag variety G/Qm with Qm a minimal parabolic subgroup of G
(cf. [], [5]).

It is easy to verify that the large Lie subalgebras in Proposition 2 are

quasi-spherical. The next theorem is the principal result of this section.
Theorem 4. Quasi-spherical Lie subalgebras are always large in o.
Remark. One can see from Theorem 3, coupled with a recent result of

Bien and Oshima, that the converse is also true in the above theorem under
the assumption that a large Lie subalgebra rto is algebraic in 9o.

5. Finite multiplicity criteria for induced representations. Let G be a

connected semisimple Lie group with finite center, and K be a maximal com-
pact subgroup of G. The corresponding Lie algebras are denoted respectively
by. go and fo. We have a Cartan decomposition go fo ( Po of go as in {}4.

Let H be a Harish-Chandra (g,f)-module on which the compact group K
acts in such a way as

k’v (1/n!)Xv
=0

for v H and k- expX with X fo. Such an H is called a
Harish-Chandra (fl, K)-module. A fundamental theorem of Harish-Chandra
says that the (irreducible) Harish-Chandra (g, K)-modules correspond to
the (irreducible) admissible representations of G, by passing to the K-finite
part (see e.g., [7, Chap.8]).

If (r], E) is a smooth Frechet representation (cf. [8, I, 2.1]) of a closed
subgroup N of G, the group G acts on the space sd(G; ) of real analytic
functions f G---* E satisfying

f(gn) (n)-f(g) for (n, g) N x G,
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by left translation L. M (G r/) has the structure of a U (g)-module through
differentiation. We call the gained (L, M(G 7)) the G-representation or the
U (g)-module analytically induced from 7.

We study U(g)-homomorphisms from a Harish-Chandra (g, K)-
module H into M (G r]), and especially the intertwining numbers
(5.1) Iv(,)(H, s(G; /))"= dim Homv()(H, M(G; r)),
which give the multiplicities of H in st/(G r/) as U (g)-submodules for irre-
ducible H’s.

For a Harish-Chandra (g, K)-module H, we can and do take a
finite-dimensional, K-stable generating subspace H0 of H. Then the associ-
ated graded S(g)-module M gr(H Ho) (k Mk has a natural K-module
structure.

The intertwining number Iv(,)(H, sd(G ;r/)) from H to M(G ;7) can be
estimated as in

Proposition 4. For each x G, one has the inequality

(5.2) Iv)(H, sg(G ;)) <_ 2 dim HomnN-(M/((x’n)M), E),
k=O

where ((x’n)M), M, fl (x’n) M) with x’n Ad(x)n, is (K fl
xNx-)-stable, and (fix, Ez) denotes the representation of xNx- on E defined
by rlx(xnx-) ?(n) (n N)

This proposition together with Theorem 1, enables us to deduce a useful
criterion for the finiteness of intertwining numbers Iu()(H, (G ;r])), as
follows.

Theorem 5. The intertwining number I(H s (G ;?) ) from a
Harish-Chandra (g, K)-module H to an induced U (g)-module (G ;r]) takes

finite value if there exists an x G such that
(5.3) (fi; H) f3 (x.n) z= (0),
and that
(5.4) dim Homxg-, (Vr, Ex) < oo holds
for every irreducible constituent Vr of (K f3 xNx-)-module M/(x" n)M. Here
M gr(H Ho) with K-stable Ho, and p(g; H) is the associated variety of H.

We say that the induced module M (G r/) has the finite multiplicity prop-
erty if the intertwining number Iv()(H, sg(G ;r/)) is finite for every
Harish-Chandra (, K)-module H. As a consequence of Theorem 5, we
establish

Theorem 6. Let N be a closed subgroup of G whose Lie algebra no is large
in o, and take an element x G such that (x" n) +/- VI A/(p) (0). Then, for a
smooth Frchet representation (, E) of N, the induced module /(G; r]) has
the finite multiplicity property if so is the restriction of to the compact subgroup
-1x KxN.

Corollary 4. If no -Lie(N) is large in o, the representation (L,
/(G; r/)) is of multiplicity finite for any finite-dimensional N-representation

The above theorem extends one of the principal results in our previous
work [8, I, Th.2.12], where we studied the case of semidirect product large
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Lie subalgebras no "-Do -Uo specified in Proposition 3 with symmetrizing

Do, through the theory of (K, N)-spherical functions.
The details of this article will appear elsewhere.
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