76. Criteria for the Finiteness of Restriction of U(g)-modules to Subalgebras and Applications to Harish-Chandra Modules

By Hiroshi YAMASHITA

Department of Mathematics, Kyoto University (Communicated by Kiyosi ITÔ, M. J. A., Dec. 14, 1992)

Let g be a finite-dimensional complex Lie algebra, and U(g) be the universal enveloping algebra of g. In this paper, we give simple and useful criteria for finitely generated U(g)-modules H to remain finite under the restriction to subalgebras $A \subset U(g)$, by using the algebraic varieties in g^* associated to H and A. It is shown that, besides the finiteness, the U(g)-modules H satisfying our criteria preserve some important invariants under the restriction.

Applying the criteria to Harish-Chandra modules of a semisimple Lie algebra g, we specify among other things, a large class of Lie subalgebras of g on which all the Harish-Chandra modules are of finite type. This allows us to extend largely the finite multiplicity theorems for induced representations of a semisimple Lie group, established in our earlier work [8].

1. Associated varieties for finitely generated U(g)-modules. We begin with defining three important invariants: the associated variety, the Bernstein degree and the Gelfand-Kirillov dimension, of finitely generated modules over a complex Lie algebra (cf. [6]).

Let V be a finite-dimensional complex vector space. We denote by $S(V) = \bigoplus_{k=0}^{\infty} S^k(V)$ the symmetric algebra of V, where $S^k(V)$ is the homogeneous component of S(V) of degree k. Let $M = \bigoplus_{k=0}^{\infty} M_k$ be a finitely generated, nonzero, graded S(V)-module, on which S(V) acts in such a way as $S^k(V) M_{k'} \subset M_{k+k'}$ $(k, k' \ge 0)$. Then each homogeneous component M_k of M is finite-dimensional.

Proposition 1 (Hilbert-Serre, see [9, Ch. VII, §12]). (1) There exists a unique polynomial $\varphi_M(q)$ in q such that $\varphi_M(q) = \dim(M_0 + M_1 + \cdots + M_q)$ for sufficiently large q.

(2) Let $(c(M)/d(M)!)q^{d(M)}$ be the leading term of φ_M . Then c(M) is a positive integer, and the degree d(M) of this polynomial coincides with the dimension of the associated algebraic cone

(1.1) $\nu(M) := \{ \lambda \in V^* \mid f(\lambda) = 0 \text{ for all } f \in \operatorname{Ann}_{S(V)} M \}.$

Here, $\operatorname{Ann}_{S(V)}M$ denotes the annihilator of M in S(V), V^* the dual space of V, and S(V) is identified with the polynomial ring over V^* in the canonical way.

For a finite-demensional complex Lie algebra g, let $(U_k(\mathfrak{g}))_{k=0,1...}$ denote the natural filtration of enveloping algebra $U(\mathfrak{g})$ of g, where $U_k(\mathfrak{g})$ is the subspace of $U(\mathfrak{g})$ generated by elements $X_1 \ldots X_m$ with $m \le k$ and $X_j \in \mathfrak{g}(1$ $\le j \le m$). We identify the associated commutative ring gr $U(\mathfrak{g}) = \bigoplus_{k \ge 0}$ $U_k(\mathfrak{g}) / U_{k-1}(\mathfrak{g})$ $(U_{-1}(\mathfrak{g}) := (0))$ with the symmetric algebra $S(\mathfrak{g}) = \bigoplus_{k \ge 0} S^k(\mathfrak{g})$ of \mathfrak{g} in the canonical way.

Now let H be a finitely generated, non-zero U(g)-module. Take a finite-dimensional generating subspace H_0 of $H: H = U(g)H_0$. Setting $H_k = U_k(g)H_0$ for k = 1, 2, ..., and $H_{-1} = (0)$, we get a finitely generated, graded S(g)-module

(1.2)
$$M = \operatorname{gr}(H ; H_0) := \bigoplus_k M_k \text{ with } M_k = H_k / H_{k-1}.$$

The variety $\nu(M) \subset \mathfrak{g}^*$, the integers c(M) and d(M) defined for this M as in Proposition 1, are independent of the choice of a generating subspace H_0 . These three invariants of H are called respectively the *associated variety*, the *Bernstein degree* and the *Gelfand-Kirillov dimension* of H. We denote $\nu(M)$, c(M) and d(M) respectively by $\nu(\mathfrak{g}; H)$, $c(\mathfrak{g}; H)$ and $d(\mathfrak{g}; H)$, emphasizing that H is being considered as a $U(\mathfrak{g})$ -module.

2. Restriction of $U(\mathfrak{g})$ -modules to subalgebras. Let A be a subalgebra of $U(\mathfrak{g})$ containing the identity element $1 \in U(\mathfrak{g})$. We denote by R the graded subalgebra of $S(\mathfrak{g}) = \operatorname{gr} U(\mathfrak{g})$ associated to $A: R = \operatorname{gr} A:=\bigoplus_{k\geq 0} A_k/A_{k-1}$ with $A_k = A \cap U_k(\mathfrak{g})$. We say that a finitely generated $U(\mathfrak{g})$ -module H has the good restriction to A if there exists a finite-dimensional generating subspace H_0 of H for which the associated graded $S(\mathfrak{g})$ -module $\operatorname{gr}(H; H_0)$ is finitely generated over R.

The following theorem characterizes, by means of the associated varieties, the U(g)-modules H having the good restriction to A.

Theorem 1. (1) The restriction of H to A is good whenever the condition (2.1) $\nu(g; H) \cap R_{+}^{*} = (0)$ on algebraic varieties in g^{*} is satisfied. Here $R_{+}^{*} := \{\lambda \in g^{*} | f(\lambda) = 0 \text{ for all } f(\lambda) \}$

on algebraic varieties in \mathfrak{g}^* is satisfied. Here $R_+^* := \{\lambda \in \mathfrak{g}^* | f(\lambda) = 0 \text{ for all } f \in R_+\}$ denotes the variety in \mathfrak{g}^* associated to the maximal graded ideal $R_+ := \bigoplus_{k>0} (R \cap S^k(\mathfrak{g}))$ of $R = \operatorname{gr} A$.

(2) Conversely, if R is Noetherian and if $H \neq (0)$ admits the good restriction to A, one necessarily has (2.1).

Let n be a Lie subalgebra of g. Applying this theorem to the case A = U(n) (R = S(n) is obviously Noetherian), we obtain immediately the following

Corollary 1. A finitely generated $U(\mathfrak{g})$ -module $H \neq (0)$ has the good restriction to $U(\mathfrak{n})$ if and only if $\nu(\mathfrak{g}; H) \cap \mathfrak{n}^{\perp} = (0)$ holds, where $\mathfrak{n}^{\perp} := \{\lambda \in \mathfrak{g}^* \mid < \lambda, X > = 0 \text{ for all } X \in \mathfrak{n} \}$ is the orthogonal of \mathfrak{n} in \mathfrak{g}^* .

The U(g)-modules admitting the good restriction enjoy nice properties as follows.

Theorem 2. Suppose that H has the good restriction to a subalgebra $A \subset U(\mathfrak{g})$.

(1) H is finitely generated as an A-module.

(2) If $A = U(\mathfrak{n})$ for a Lie subalgebra \mathfrak{n} of \mathfrak{g} , then H is of finite type over $U(\mathfrak{n})$, and so one can define the associated variety $\nu(\mathfrak{n}; H)$, Bernstein degree $c(\mathfrak{n}; H)$, and Gelfand-Kirillov dimension $d(\mathfrak{n}; H)$ of H as a $U(\mathfrak{n})$ -module as well as those as a $U(\mathfrak{g})$ -module. These two kinds of quantities have the relations

317

H. YAMASHITA

 $\dim \nu(\mathfrak{g}; H) = \dim \nu(\mathfrak{n}; H).$

(2.2) $c(\mathfrak{g}; H) = c(\mathfrak{n}; H), \, d(\mathfrak{g}; H) = d(\mathfrak{n}; H),$ and hence

(2.3)

Moreover one has

 $p^*\nu(\mathfrak{g};H) \subset \nu(\mathfrak{n};H),$ (2.4)

where $p^*: g^* \rightarrow n^*$ denotes the restriction map of linear forms.

We can give two interesting consequences of the above theorems, as follows.

Corollary 2. Let \mathfrak{n} be a Lie subalgebra of \mathfrak{g} , and H be a finitely generated $U(\mathfrak{g})$ -module satisfying the condition $\nu(\mathfrak{g}; H) \cap \mathfrak{n}^{\perp} = (0)$. Then, the n-homology groups $H_k(n, H)$ (k = 0, 1, ...) of H (see e.g., [2] for the definition) are all finite-demensional.

Corollary 3. If a finitely generated $U(\mathfrak{g})$ -module H has the good restriction to $U(\mathfrak{n})$, the Gelfand-Kirillov dimension $d(\mathfrak{g}; H)$ of H does not exceed dim n.

3. Nilpotent variety $\mathcal{N}(\mathfrak{p})$ and good restriction of Harish-Chandra mod**ules.** Now, assume g to be semisimple, and let $g = \mathfrak{t} \oplus \mathfrak{p}$ be a symmetric decomposition of g determined by an involutive automorphism of g. We consider the category $C(\mathfrak{k})$ of finitely generated $U(\mathfrak{g})$ -modules H on which the subalgebra $U(\mathfrak{k})Z(\mathfrak{g})$ acts locally finitely, where $Z(\mathfrak{g})$ denotes the center of $U(\mathfrak{g})$. Such an H in $C(\mathfrak{k})$ is called a Harish-Chandra $(\mathfrak{g}, \mathfrak{k})$ -module. We regard the varieties $\nu(\mathfrak{g}; H) \subset \mathfrak{g}^*$ as algebraic cones in \mathfrak{g} by identifying \mathfrak{g}^* with g through the Killing form of g.

Lemma. The associated variety $\nu(\mathfrak{g}; H)$ of any Harish-Chandra $(\mathfrak{g},\mathfrak{k})$ -module H is contained in the variety $\mathcal{N}(\mathfrak{p})$ of all nilpotent elements of \mathfrak{p} . Moreover, there exists an \tilde{H} in $C(\mathfrak{k})$ such that $\nu(\mathfrak{g};\tilde{H})$ coincides with the whole $\mathcal{N}(\mathfrak{p}).$

Theorem 1 together with this lemma yields the following result.

Theorem 3. All the Harish-Chandra $(\mathfrak{g}, \mathfrak{k})$ -modules have the good restriction to a subalgebra A of $U(\mathfrak{g})$ if $\mathcal{N}(\mathfrak{p}) \cap R^{\#}_{+} = (0)$ holds for $R = \operatorname{gr} A$. The converse is also true provided that R is Noetherian.

4. Large Lie subalgebras of a real semisimple Lie algebra. Let g_0 be a real semisimple Lie algebra, and $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$ be the Cartan decomposition of g_0 determined by an involution θ . Conventionally, we write \mathfrak{h} ($\subseteq \mathfrak{g}$) for the complexification of a real vector subspace \mathfrak{h}_0 of \mathfrak{g}_0 by dropping the subscript **'0'**.

A Lie subalgebra \mathfrak{n}_0 of \mathfrak{g}_0 is said to be *large* in \mathfrak{g}_0 if there exists an element $x \in \text{Int}(\mathfrak{g}_0)$ for which every Harish-Chandra $(\mathfrak{g},\mathfrak{k})$ -module has the good restiction to $U(x \cdot n)$. By Theorem 3, this amounts to a simple geometric condition:

 $(x \cdot \mathfrak{n})^{\perp} \cap \mathcal{N}(\mathfrak{p}) = (0)$ for some $x \in \operatorname{Int}(\mathfrak{g}_0)$. (4.1)

Here $Int(g_0)$ denotes the group of inner automorphisms of g_0 . Notice that the largeness of a Lie subalgebra does not depend on the choice of a \mathfrak{k}_0 .

We now specify many of large Lie subalgebras of g_0 .

At first, here are two kinds of typical large Lie subalgebras.

No. 10]

Proposition 2. (1) Let $g_0 = \mathfrak{k}_0 + \mathfrak{a}_{p,0} + \mathfrak{u}_{m,0}$ be an Iwasawa decomposition of \mathfrak{g}_0 . Then the maximal nilpotent Lie subalgebra $\mathfrak{u}_{m,0}$ of \mathfrak{g}_0 is large.

(2) The symmetrizing Lie subalgebra $\mathfrak{h}_0 = \{X \in \mathfrak{g}_0 \mid \sigma X = X\}$ is large in \mathfrak{g}_0 for any involutive automorphism σ of \mathfrak{g}_0 .

The claim (1), together with Theorem 3, covers the results of Casselman-Osborne [3, Th.2.3] and Joseph [4, II, 5.6] on the restriction of Harish-Chandra modules to \mathfrak{u}_m . The second one allows us to deduce the finite multiplicity theorem of van den Ban, for the quasi-regular representation on $L^2(G/H)$, associated to a semisimple symmetric space G/H (cf. [8]).

Now let q_0 be any parabolic subalgebra of g_0 , and $q_0 = l_0 + u_0$ with $l_0 = q_0 \cap \theta q_0$, be its Levi decomposition. Since the Levi component l_0 is reductive, one can define large Lie subalgebras of l_0 just in the same way.

The largeness of Lie subalgebras is preserved by parabolic induction.

Proposition 3. If \mathfrak{h}_0 is a large Lie subalgebra of \mathfrak{l}_0 , the semidirect product Lie subalgebra $\mathfrak{h}_0 + \mathfrak{u}_0$ is large in \mathfrak{g}_0 .

Let $\mathfrak{q}_{m,0} = \mathfrak{m}_0 + \mathfrak{a}_{p,0} + \mathfrak{u}_{m,0}$ be a minimal parabolic subalgebra of \mathfrak{g}_0 , where \mathfrak{m}_0 denotes the centralizer of $\mathfrak{a}_{p,0}$ in \mathfrak{t}_0 . We say that a Lie subalgebra \mathfrak{n}_0 of \mathfrak{g}_0 is *quasi-spherical* if there exists a $z \in \operatorname{Int}(\mathfrak{g}_0)$ such that $z \cdot \mathfrak{n}_0 + \mathfrak{q}_{m,0}$ $= \mathfrak{g}_0$. This is equivalent to saying that, if G is a connected Lie group with Lie algebra \mathfrak{g}_0 , the analytic subgroup of G corresponding to \mathfrak{n}_0 has an open orbit on the flag variety G/Q_m with Q_m a minimal parabolic subgroup of G (cf. [1], [5]).

It is easy to verify that the large Lie subalgebras in Proposition 2 are quasi-spherical. The next theorem is the principal result of this section.

Theorem 4. Quasi-spherical Lie subalgebras are always large in g_0 .

Remark. One can see from Theorem 3, coupled with a recent result of Bien and Oshima, that the converse is also true in the above theorem under the assumption that a large Lie subalgebra n_0 is algebraic in g_0 .

5. Finite multiplicity criteria for induced representations. Let G be a connected semisimple Lie group with finite center, and K be a maximal compact subgroup of G. The corresponding Lie algebras are denoted respectively by g_0 and \mathfrak{k}_0 . We have a Cartan decomposition $g_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$ of g_0 as in §4.

Let H be a Harish-Chandra (g, t)-module on which the compact group K acts in such a way as

$$k \cdot v = \sum_{n=0}^{\infty} (1/n!) X^n v$$

for $v \in H$ and $k = \exp X$ with $X \in \mathfrak{k}_0$. Such an H is called a *Harish-Chandra* (g, K)-module. A fundamental theorem of Harish-Chandra says that the (irreducible) Harish-Chandra (g, K)-modules correspond to the (irreducible) admissible representations of G, by passing to the K-finite part (see e.g., [7, Chap.8]).

If (η, E) is a smooth Fréchet representation (cf. [8, I, 2.1]) of a closed subgroup N of G, the group G acts on the space $\mathcal{A}(G; \eta)$ of real analytic functions $f: G \to E$ satisfying

$$f(gn) = \eta(n)^{-1} f(g) \text{ for } (n, g) \in N \times G,$$

by left translation L. $\mathcal{A}(G; \eta)$ has the structure of a $U(\mathfrak{g})$ -module through differentiation. We call the gained $(L, \mathcal{A}(G; \eta))$ the *G*-representation or the $U(\mathfrak{g})$ -module analytically induced from η .

We study U(g)-homomorphisms from a Harish-Chandra (g, K)module H into $\mathcal{A}(G; \eta)$, and especially the intertwining numbers

(5.1) $I_{U(\mathfrak{g})}(H, \mathscr{A}(G; \eta)) := \dim \operatorname{Hom}_{U(\mathfrak{g})}(H, \mathscr{A}(G; \eta)),$ which give the multiplicities of H in $\mathscr{A}(G; \eta)$ as $U(\mathfrak{g})$ -submodules for irre-

ducible **H'**s.

For a Harish-Chandra (\mathfrak{g}, K) -module H, we can and do take a finite-dimensional, K-stable generating subspace H_0 of H. Then the associated graded $S(\mathfrak{g})$ -module $M = \operatorname{gr}(H; H_0) = \bigoplus_k M_k$ has a natural K-module structure.

The intertwining number $I_{U(\mathbf{g})}(H,\,\mathscr{A}\,(G\,;\eta))$ from H to $\mathscr{A}\,(G\,;\eta)$ can be estimated as in

Proposition 4. For each $x \in G$, one has the inequality

(5.2)
$$I_{U(g)}(H, \mathcal{A}(G;\eta)) \leq \sum_{k=0}^{\infty} \dim \operatorname{Hom}_{K \cap xNx^{-1}}(M_k/((x \cdot \mathfrak{n})M)_k, E_x),$$

where $((x \cdot n)M)_k = M_k \cap (x \cdot n) M$ with $x \cdot n = \operatorname{Ad}(x)n$, is $(K \cap xNx^{-1})$ -stable, and (η_x, E_x) denotes the representation of xNx^{-1} on E defined by $\eta_x(xnx^{-1}) = \eta(n)$ $(n \in N)$.

This proposition together with Theorem 1, enables us to deduce a useful criterion for the finiteness of intertwining numbers $I_{U(g)}(H, \mathcal{A}(G;\eta))$, as follows.

Theorem 5. The intertwining number $I_{U(\mathfrak{g})}(H, \mathcal{A}(G; \eta))$ from a Harish-Chandra (\mathfrak{g}, K) -module H to an induced $U(\mathfrak{g})$ -module $\mathcal{A}(G; \eta)$ takes finite value if there exists an $x \in G$ such that

(5.3) $\nu(\mathfrak{g}; H) \cap (x \cdot \mathfrak{n})^{\perp} = (0),$

and that

(5.4) $\dim \operatorname{Hom}_{K \cap xNx^{-1}}(V_r, E_x) < \infty \text{ holds}$

for every irreducible constituent V_r of $(K \cap xNx^{-1})$ -module $M/(x \cdot \mathfrak{n})M$. Here $M = \operatorname{gr}(H; H_0)$ with K-stable H_0 , and $\nu(\mathfrak{g}; H)$ is the associated variety of H.

We say that the induced module $\mathscr{A}(G;\eta)$ has the *finite multiplicity property* if the intertwining number $I_{U(\mathfrak{g})}(H, \mathscr{A}(G;\eta))$ is finite for every Harish-Chandra (\mathfrak{g}, K) -module H. As a consequence of Theorem 5, we establish

Theorem 6. Let N be a closed subgroup of G whose Lie algebra \mathfrak{n}_0 is large in \mathfrak{g}_0 , and take an element $x \in G$ such that $(x \cdot \mathfrak{n})^{\perp} \cap \mathcal{N}(\mathfrak{p}) = (0)$. Then, for a smooth Fréchet representation (η, E) of N, the induced module $\mathcal{A}(G; \eta)$ has the finite multiplicity property if so is the restriction of η to the compact subgroup $x^{-1}Kx \cap N$.

Corollary 4. If $\mathfrak{n}_0 = \operatorname{Lie}(N)$ is large in \mathfrak{g}_0 , the representation $(L, \mathcal{A}(G; \eta))$ is of multiplicity finite for any finite-dimensional N-representation η .

The above theorem extends one of the principal results in our previous work [8, I, Th.2.12], where we studied the case of semidirect product large

Lie subalgebras $\mathfrak{n}_0 = \mathfrak{h}_0 + \mathfrak{u}_0$ specified in Proposition 3 with symmetrizing \mathfrak{h}_0 , through the theory of (K, N)-spherical functions.

The details of this article will appear elsewhere.

References

- F. Bien: Finiteness of the number of orbits on maximal flag varieties (1991)(preprint).
- [2] H. Cartan and S. Eilenberg: Homological Algebra. Princeton (1956).
- [3] W. Casselman and M. S. Osborne: The restriction of admissible representations to n. Math. Ann., 233, 193-198 (1978).
- [4] A. Joseph: Goldie rank in the enveloping algebra of a semisimple Lie algebra, I. J. of Alg., 65, 269-283 (1980); II, ibid., 284-306.
- [5] T. Matsuki: Orbits on flag manifolds. Proceedings of the International Congress of Mathematicians Kyoto 1990. Springer-Verlag, pp.807-813 (1991).
- [6] D. A. Vogan: Gelfand-Kirillov dimension for Harish-Chandra modules. Invent. math., 48, 75-98 (1978).
- [7] N. R. Wallach: Harmonic Analysis on Homogeneous Spaces. Dekker (1973).
- [8] H. Yamashita: Finite multiplicity theorems for induced representations of semisimple Lie groups I. J. Math. Kyoto Univ., 28, 173-211 (1988); II, ibid., 383-444.
- [9] O. Zariski and P. Samuel: Commutative Algebra. vol. II, Springer-Verlag (World publishing corporation, China)(1975).