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Prime Ideals in Noncommutative Valuation Rings
in Finite Dimensional Central Simple Algebras
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***)

1. Introduction. In [21, Dubrovin introduced a notion of non-
commutative valuation rings in simple Artinian rings, and proved some
elementary properties of them. He obtained in [3] more detailed results
concerning valuation rings in finite dimensional central simple algebras over

fields.
In this paper, we investigate prime ideals in non-commutative valuation

rings in the case of algebras. The key result is Proposition 9 which states
that, for any ideal A of a valuation ring R, fl An

is a prime ideal of R. Us-
ing this result, we characterize branched and unbranched prime ideals.

2. Throughout this paper, let V be a valuation domain with the
quotient field K, and let R be a valuation ring in the sense of [2] in a finite
dimensional central simple K-algebra with its center V and KR .

First, we shall list the elementary properties of a non-commutative
valuation ring R which are used frequently.
(A) R-ideals are linearly ordered by inclusion and the Jacobson radical

J(R) is the unique maximal ideal of R (2 Theorem 4 (1) and {}1 Theorem 4
of [21).
(B) Each overring S of R is also a valuation ring, and J(S) is a prime ideal
of R (Theorem 4 (2) of [2, 2]).
(C) For any R-ideal A, O(A) O(A), where O(A) (q 2 Aq - A},
the right order of A, and O(A) {q [qA-A}, the left order of A
(Corollary to Proposition 4 of [3, 2]).
(D) For any non-zero element x R, there is some regular z R such that
RxR zT Tz, where T- Or(RxR) Ot(RxR) (Proposition 3 of
[3, 21).
(E) For any prime ideal P of R, C(P) {c R [c-t-P] is regular mod
P} is a regular Ore set of R and so there exists the localization of R with
respect to C(P). We denote this by Re. Let p P f3 V. Then we have R
R, where R denotes the localization of R with respect to V- p (Theorem 1
of [3, 21).
(F) The mapping P---’ Re is an inclusion reversing bijection between the set
of prime ideals of R and the set of overrings of R. The inverse mapping is
S--* ](S). (Corollary to Theorem 4 of [2, 2] and Theorem 1 (3) of [3, {}2].)

Now we shall investigate prime ideals of R. For any ideal A of R, we
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define v fl {P: prime ideal of RIP - A}, the radical of A. The follow-
ing is trivial from Property (A).

Lemma 1. IfA is an ideal of R, then (- is a prime ideal of R.
Lemma 2. Let P be a prime ideal of R. Then Re Or(P) Ot(P).
Proof First we note that O (P)= Ot (P)by Property (C). From

Property (F), we have P J(Rp), and so P is an ideal of Re. Hence we have

Re - Or(P). Conversely, since Or(P) - R - P and P is an ideal of Or(P),
we have R

_
J (Or (P))--P by Properties (B) and (A). It follows from

Properties (E) and (F) that Re- R
_

Ry(o,,p))nv- Ry<o,<e)) Or(P). Hence
R= O(P).

From Lemma 2, we have
Lemma 3. Let P and Pz be prime ideals of R such that P Pz. Then we

have Or(P1) ----- Or (P.).
An ideal Q of R is called a primary ideal if xRy

_
Q and x Q, then

y -, and if xRy
_
Q and x -O, then y Q. If P, then we say

that Q is a P-primary ideal. A prime ideal P of R is said to be branched if
there exists a P-primary ideal Q of R such that Q :/: P. In other case, P is
called an unbranched prime ideal.

Lemma 4. For any ideal A of R, we have 0r (A)

_
O ((A ). If A is a

primary ideal, then the equality holds.

Proof. By property (A), we have Or(A) Or(/-) or Or(A) - Or(f-).
Assume that Or(A) :D Or(-). Then we have ](Or(A)) ](Or(-))
](R,/-) (A- by Property (F), Lemmas 1 and 2. On the other hand, by Prop-
erty (C), A is an ideal of Or(A), and so we have A

_
](O(A)) by Property

(A). It follows that A
_
](Or(A)), since, by Property (B), ](Or(A)) is a

prime ideal of R. Thus we have v- -- ](Or(A)) ](Or(V)) /-, a con-
tradiction. Hence Or(A) G Or (v). Next assume that A is a primary ideal,
and let P v and p P fl V. For any element q ac- A, where a A
and c V--p, we have qRc qcR aR

_
A. On the other hand, c P

and q A
_
P P

__
R. Since A is a P-primary ideal, we have q A

and so A A, that is, A is an ideal of Rp. Hence, by Lemma 2, we have
Or(v) R

_
O(A).

Remark 5. The equality in Lemma 4 does not hold in general. For ex-
ample, let V be a valuation domain with rank 2, and let 0 4= P Pe be
prime ideals of V. Then by Theorem 17.3 (e) of [5, p. 190], P and Pe are
branched, and so P v/-V for some a( 0) V. Assume that Or(aV)
Or ((-aV) (- Rp ). Then aV is an ideal of Rp, and so aV is a P-primary
ideal by the next Lemma 6. Hence, by Theorem 17.3 (a) of [5], we have
aV’xV aV for any x V- P, and so xV V, that is, x is a unit of V.
It follows that P is a maximal ideal of V, a contradiction. Thus we have
O(aV) c O(vV).

Lemma 6. Let Q - P be ideals of R and assume that P is prime. Then
the following are equivalent.
(1) Q is a P-primary ideal.
(2) -Q P and Q is an ideal of Re.
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Proof (1) :=> (2)" Assume that Q is a P-primary ideal. Then -0 P
by the definition. By Lemmas 2 and 4, Or(Q) Or(/--O) Or(P) R, and
so Q is an ideal of R.
(2) =* (1)" Assume that the condition (2) holds and :cRy

_
Q, where

x, y R. If z P, then we have RcR P, and so RexR R,, because
P is the unique maximal ideal of R by Properties (A) and (F). Since Q is an

ideal of R and R R by Property (E), wherep-- P V, we have -RexRy RexRy Rey y. Similarly, if y P, then x Q. Hence Q is a

P-primary ideal.
Corollary 7. If Q and Q. are P-primary ideals of R, then Q1Q is also a

P-primary ideal (see [5]).
Proof It is clear that /QQ -P and QQe is an Rp-ideal. Hence it is

P-primary by Lemma 6.
Lemma 8. Let Q be a P-primary ideal of R. Then for any ring T such

that R T Rp, Q is a P-primary ideal as an ideal of T.
Proof First we note that Q is an ideal of T by Lemma 6. Let I’, ]’ be

ideals of T, and assume that ]’ ;P. If I’]" - Q, then we have (I’ fl R)
(jr, fl R)

___
Q and ]’ R P, because J’= Or’ ;q R)Ry(r)= (]’ fl R)T

by Property (F). Hence I’ f/ R
___

Q, and so I’= (I’ R)T
_
QT- Q.

Proposition 9. For any ideal A of R, Po An is a prime ideal.

Proof. (i) First, we assume that A is a primary ideal. Let x, y be
elements of R such that x Po and y P0. Then x An

and y Am
for

some integers n, m > 0, and so RxR An Amand RyR by Property (A).
By Property (D), RxR zT- Tz and RyR- z2T2 T2z2, where T
Or(RxR), T2- Or(RyR) and z, z R. Now we have T

___
T2 or T --- T2

by Property (A). We may assume that T-----T2. Then AE+m- A’ RyR
A’Txz zTT2z2. If A’ Tz2 zTT2z2, then AnTe z1T17 z1T1, because

ze is a regular element. Further we have / v/
_

v/RxR, and so

Or (A’) Or (/-) - Or (v/RxR) - Or (RxR) T - T by Corollary 7 and
A AnLemmas 3 and 4. Thus we have T. ztT, a contradiction Hence

A.rt 4-inAnTz zTTz., and so z T1T.z2 RxRyR, and we have xRy c2

P0. Thus P0 is a prime ideal.

(ii) In general case, let P v/-. If P is not idempotent, then A D P for some
k > 0, because if A___ P" for all n >0, thenA

_
f? pn p= /-, and by

case (i), f/ P" is a prime ideal, a contradiction. Hence A P for some k.
Then by Property (A), we have A D P. It follows that pn

_
f? An

_
f? pn

__
pn, and so Po A" fl P" is a prime ideal by case (i). If P

is idempotent and P- A, then Po 1 A 1 P" P is a prime ideal. If
P is idempotent and P / D A, then for any element x P A, we have
RxR f A, and so A RxR - RpxR,

_
P. If P RxRe, then by Property

(D) and Lemma 2 P zRp for some z P, so we have 4= P, a contradic-
tion. Hence P D RpxRe. Put Q- RpxRp. Then Q is an Rp-ideal and

P, because P D Q D A and P- v/. So Q is a P-primary ideal by
Lemma 6. Further, if A Qn for all n > 0, then P (? Qn A and fl Qn
is a prime ideal by case (i). This is a contradiction, since P /-. Hence
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A
___

Qk for some k > 0, and so N Qn
_

A
_

;q Qkn
_

0 Qn. Thus
Po An= Qn is aprimeideal.

Lemma 10. Let A be an ideal of R.
(1) IrA ATM for some k O, then A is an idempotent prime ideal.
(2) Let P be a prime ideal of R such that P c A. Then P An

(3) If B is an ideal of R and A v/B, then A"
_
B for some n > O.

Proof (1) Put Po f An- If A ATM, then Po A. By Proposition
9, Po is a prime ideal. Hence Po A, and so A Po is a prime ideal. Fur-
ther, since A A, A is idempotent.
(2) If A"

___
P for some n > 0, then A

_
P and we have A A, a contradic-

tion. Hence An P for any n > 0, and so An

_
P for any n > 0 by Property

(A).ThusP_ An.
(3) If An : B for any n > 0, then An B and so B

___
An. Since An

is
a prime ideal, by Proposition 9, it follows that x/-- An- A, that is,
A A, a contradiction. Hence A"

__
B for some n > 0.

Lemma ll. Let be a set of prime ideals of R and let P ,P’.
Then
(1) Or (P) f3 p, Or (P’)
(2) P is a prime ideal.

Proof (1) Let P’ . Since -P---P’, we have Or(P) --Or(V) Or(P’) by Lemmas 3 and 4. Hence Or(P) Or(P’). Converse-
ly, let x fq Or(P’)and let a P. Since a P’ for some P’.3, it
follows that ax P" x

_
P"

_
P, and so Px

_
P. Hence x Or(P).

(2) Let x, y P and let P’ .3. Then x, y P’. Hence, by Properties (A)
and (D), P" c RxR zlT1 Tz and P" c RyR= z2T2= T2z2, where

T Or(RxR), T Or(RyR) and z, z R. We may assume that T ---T2 by Property (A). Then, since P’ is a prime ideal of R, we have
P" RxR. RyR ziTTeze ziTze Tzze. Hence zz2 P’, because

T Or(RxR)
_

Or(/RxR) - Or(P’) by Lemmas 3 and 4. Thus zlze P,
and so xRy P.

Now, concerning branched and unbranched ideals, we have the following.
Theorem 12. Let P be a prime ideal of R, and let Po pn.

(1) IfP is branched and P =/= P, then
{Plk > 0} is the full set of P-primary ideals of R,

(ii) P zT Tz for some z P, where T O(P),
(iii) there is no prime ideal P" such that P P" Po and Po is a prime

ideal.

(2) IfP is branched and P P, then
(i) for any P-primary ideal Q (=/= P), Qn= {QI Q: P-primary

ideal },
(ii) Qo := {Q Q P-primary ideal} is a prime ideal,

(iii) there is no prime ideal P’ such that P P" Qo.
(iv) P U {QI Q: P-primary with Q =/= P}.

(3) The following are equivalent:
P is branched.
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ii P for some ideal A (:/: P).
(iii) P v/RaR for some a R.
(iv) P is not the union of prime ideals P" such that P" c P.
v There is a prime ideal M such that M P and there are no prime

ideals P" such as M P" P.
(4) P is unbranched if and only if P LI {P P(c P) prime ideal}.

Proof (1) By Corollary 7, P is a P-primary ideal for any k 0.
pConversely, let Q be any P-primary ideal of R. Then we have P

v/Q. By Lernma 10 (3), we have (p2)n Q for some integer n > 0. Let k be
pthe smallest integer such as

_
Q. Then p-i (Z Q and so there is some

y P-I-- Q. From Property (D), there exists z R such that RyR zT
Tz, where T- 0r (RyR). As vRyR -P, T

_
Or (4RyR) Or (Q) by

-1Lemma 4. PutA-- Qz .ThenA -- zTz-- T, and soAis an ideal of T. On
the other hand, Q AzT and zT Q. It follows from Lemma 8 that P

___
A.

Hence Q AzT
_
P RyR

_
PP- P, and so Q P. Thus (i) is

proved. (ii) follows from Lemma 8 of [2, 2]. To prove (iii), let P’ by any
prime ideal such that P’ c p. Then by Lemma 10 (2), we have P" N pn

Po. Hence there is no prime ideal P’ between P and Po, and Po is a prime
ideal by Proposition 9.
(2) By Corollary 7, Qn is a P-primary ideal, and so ff Qn Q.
Conversely, for any P-primary ideal Q, we have Q c P /-O. By Lemma
10 (3), Q

_
Qn for some n > 0, and so Q - Qn. Hence we have

Q Qn. From this fact and Proposition 9, (ii) follows. To prove (iii),
let P’ be a prime ideal such that P’ P. Then, for any P-primary ideal Q,
we have Q P’, because f-O =P. Hence P’ Q, and so P’--- Q
Qo. To prove (iv), let Q- U (QIQ" P-primary with Q =J= P}. Then it is
P-primary by Lemma 6. Assume that P Q. Then, for any element x P
with x Q, we have P

_
Q RcR, Q. Since Q is P-primary by Lem-

ma 6, it must be equal to P. Then P RcR, zRe R,z by Property (D)
and Lemma 2, which contradicts to P P2. Thus P Q.
(3) ===> (ii) is clear.
ii =:> (iii)" For a P A, we have A RaR, and so A RaR

_
P by

Property (A). Hence P- v - /RaR
_

P, and so P- /RaR.
(iii)=== (iv)" Assume that P- v’RaR. For any prime ideal P’ such as
P’P, wehaveaP’,and soa P-- U {P" prime ideal P’ c P}.
(iv) == (v)" By Lemma 11, U {P" prime ideal]P’ P} is a prime ideal. So
we may take this prime ideal as M.
(v) ===> )" If P is not idempotent, then by Corollary 7, P is a P-primary
ideal which is different from P. In the case P is idempotent, let x P- M
and put Q- RxR. Then we have Qe

___
P, because P- .[(Re). By Property

(D), there is a z Re such that Q,- RpcRe= zT-Tz, where T-
Or (RxRe), and so Qe is not idempotent, hence Qe P. Further, since
Q (Z M, we have M Qe P by Property (A), and hence -Oe P. Thus
Qe is a P-primary ideal of R which is different from P by Lemma 6.
(4) follows immediately from (3).
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Corollary 13. Let P be a prime ideal R and let p P fq K Then
(1) p is branched if and only if P is branched.
(2) p is idempotent if and only if P is idempotent. In this case, we have P pR.

Proof (1) Assume that p is unbranched. Then p U {p[p (c p).
prime ideal} by Theorem 12 (4). By Theorem l (2) of [3, {}3], there is a

prime ideal P of R such that P fl V=p and P cP. Then U P is a

prime ideal of R by Lemma 11, and (U P) fq V: U (P fl V) U p.
Hence U P P by Theorem 1 (2) of [3, 2], and so P is unbranched by
Theorem 12 (4). The converse is proved similarly.
(2) If p is idempotent, then pR is an idempotent ideal of R, and so pR is a

prime ideal of R by Lemma 10 (1). Further, since p-- P
pR N V p, we have P- pR by Theorem 1 (2) of [3, 2], and hence P is
idempotent. Conversely assume that P is idempotent. Then, by Theorem 1 (6)
of [3, {}2], we have P--pR, and so pR--P=P=p2R. Hence we have
p p2 by following Lemma 14.

Lemma 14. Let sd and 3 be ideals of V. If sdR R, then

Proof Let a (4: 0) d. Then a i=lbiri, where bi 3, r R.
Since V is a valuation domain, we have bIV+" + bnV-bV for some
b . Let b bye, where v V. Then a= ,i=bir-- =bvr-
b(E=vr), and so b- vir)a =vir K R- V. Hence a b(Ei=

bV c_ , and so we have d c_ . The converse inclusion is proved simi-
larly.

Finally, we give an example of a non-commutative valuation ring R such
that there exists some prime ideal P of R with P pR, where p P Cl V.

Example 1,5 (see Lemma 1.3 of [4]). Let V- Za, the localization of the
ring of integers Z with respect to 2Z and let K-- Q, the field of rational
numbers. Let =D-K@Ki@Kj[Kij, where 1,
ij --ji and r p’’ "p, p,..’,pt being distinct primes --= 3 (mod 4). In
the case r--= l(mod4), R= V( Vi@Vj(Vt where t= (1 + i+j
+ ij)/2, is a maximal order with J(R)- (1 + i)R, and R/J(R)is a
division ring by Lemma 1.3 of [4]. Further we have J(R) 2R and J(R)
V- 2V, and so J(R) J(R) (J(R) gl V)R. On the other hand, by Corol-
lary to Proposition 3.3 of [1], R is a local Dedekind ring, and so R is a
non-commutative valuation ring.
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