10. Prime Ideals in Noncommutative Valuation Rings in Finite Dimensional Central Simple Algebras

By Hidetoshi Marubayashi, ${ }^{*)}$ Haruo Miyamoto, ${ }^{* *)}$ and Akira Ueda ${ }^{* * *)}$
(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1993)

1. Introduction. In [2], Dubrovin introduced a notion of noncommutative valuation rings in simple Artinian rings, and proved some elementary properties of them. He obtained in [3] more detailed results concerning valuation rings in finite dimensional central simple algebras over fields.

In this paper, we investigate prime ideals in non-commutative valuation rings in the case of algebras. The key result is Proposition 9 which states that, for any ideal A of a valuation ring $R, \cap A^{n}$ is a prime ideal of R. Using this result, we characterize branched and unbranched prime ideals.
2. Throughout this paper, let V be a valuation domain with the quotient field K, and let R be a valuation ring in the sense of [2] in a finite dimensional central simple K-algebra \sum with its center V and $K R=\sum$.

First, we shall list the elementary properties of a non-commutative valuation ring R which are used frequently.
(A) R-ideals are linearly ordered by inclusion and the Jacobson radical $J(R)$ is the unique maximal ideal of R (§2 Theorem 4 (1) and $\S 1$ Theorem 4 of [2]).
(B) Each overring S of R is also a valuation ring, and $J(S)$ is a prime ideal of R (Theorem 4 (2) of $[2, \S 2]$).
(C) For any R-ideal $A, O_{r}(A)=O_{l}(A)$, where $O_{r}(A)=\left\{q \in \sum \mid A q \subseteq A\right\}$, the right order of A, and $O_{l}(A)=\left\{q \in \sum \mid q A \subseteq A\right\}$, the left order of A (Corollary to Proposition 4 of $[3, \S 2]$).
(D) For any non-zero element $x \in R$, there is some regular $z \in R$ such that $R x R=z T=T z$, where $T=O_{r}(R x R)=O_{l}(R x R)$ (Proposition 3 of [3, §2]).
(E) For any prime ideal P of $R, C(P)=\{c \in R \mid[c+P]$ is regular mod
$P\}$ is a regular Ore set of R and so there exists the localization of R with respect to $C(P)$. We denote this by R_{P}. Let $p=P \cap V$. Then we have $R_{P}=$ R_{p}, where R_{p} denotes the localization of R with respect to $V-p$ (Theorem 1 of [3, §2]).
(F) The mapping $P \rightarrow R_{P}$ is an inclusion reversing bijection between the set of prime ideals of R and the set of overrings of R. The inverse mapping is $S \rightarrow J(S)$. (Corollary to Theorem 4 of $[2, \S 2]$ and Theorem $1(3)$ of $[3, \S 2]$.)

Now we shall investigate prime ideals of R. For any ideal A of R, we

[^0]define $\sqrt{A}=\cap\{P$: prime ideal of $R \mid P \supseteq A\}$, the radical of A. The following is trivial from Property (A).

Lemma 1. If A is an ideal of R, then \sqrt{A} is a prime ideal of R.
Lemma 2. Let P be a prime ideal of R. Then $R_{P}=O_{r}(P)=O_{l}(P)$.
Proof. First we note that $O_{r}(P)=O_{l}(P)$ by Property (C). From Property (F), we have $P=J\left(R_{p}\right)$, and so P is an ideal of R_{P}. Hence we have $R_{P} \subseteq O_{r}(P)$. Conversely, since $O_{r}(P) \supseteq R \supseteq P$ and P is an ideal of $O_{r}(P)$, we have $R \supseteq J\left(O_{r}(P)\right) \supseteq P$ by Properties (B) and (A). It follows from Properties (E) and (F) that $R_{P}=R_{p} \supseteq R_{J\left(O_{r}(P)\right) \cap V}=R_{J\left(o_{r}(P)\right)}=O_{r}(P)$. Hence $R_{P}=O_{r}(P)$.

From Lemma 2, we have
Lemma 3. Let P_{1} and P_{2} be prime ideals of R such that $P_{1} \subseteq P_{2}$. Then we have $O_{r}\left(P_{1}\right) \supseteq O_{r}\left(P_{2}\right)$.

An ideal Q of R is called a primary ideal if $x R y \subseteq Q$ and $x \notin Q$, then $y \in \sqrt{Q}$, and if $x R y \subseteq Q$ and $x \notin \sqrt{Q}$, then $y \in Q$. If $\sqrt{Q}=P$, then we say that Q is a P-primary ideal. A prime ideal P of R is said to be branched if there exists a P-primary ideal Q of R such that $Q \neq P$. In other case, P is called an unbranched prime ideal.

Lemma 4. For any ideal A of R, we have $O_{r}(A) \subseteq O_{r}(\sqrt{A})$. If A is a primary ideal, then the equality holds.

Proof. By property (A), we have $O_{r}(A) \supseteq O_{r}(\sqrt{A})$ or $O_{r}(A) \subseteq O_{r}(\sqrt{A})$. Assume that $O_{r}(A) \supset O_{r}(\sqrt{A})$. Then we have $J\left(O_{r}(A)\right) \subset J\left(O_{r}(\sqrt{A})\right)=$ $J\left(R_{\sqrt{A}}\right)=\sqrt{A}$ by Property (F), Lemmas 1 and 2 . On the other hand, by Property (C), A is an ideal of $O_{r}(A)$, and so we have $A \subseteq J\left(O_{r}(A)\right)$ by Property (A). It follows that $\sqrt{A} \subseteq J\left(O_{r}(A)\right)$, since, by Property (B), $J\left(O_{r}(A)\right)$ is a prime ideal of R. Thus we have $\sqrt{A} \subseteq J\left(O_{r}(A)\right) \subset J\left(O_{r}(\sqrt{A})\right)=\sqrt{A}$, a contradiction. Hence $O_{r}(A) \subseteq O_{r}(\sqrt{A})$. Next assume that A is a primary ideal, and let $P=\sqrt{A}$ and $p=P \cap V$. For any element $q=a c^{-1} \in A_{p}$, where $a \in A$ and $c \in V-p$, we have $q R c=q c R=a R \subseteq A$. On the other hand, $c \notin P$ and $q \in A_{p} \subseteq P_{p}=P \subseteq R$. Since A is a P-primary ideal, we have $q \in A$ and so $A_{p}=A$, that is, A is an ideal of R_{p}. Hence, by Lemma 2, we have $O_{r}(\sqrt{A})=R_{p} \subseteq O_{r}(A)$.

Remark 5. The equality in Lemma 4 does not hold in general. For example, let V be a valuation domain with rank 2 , and let $0 \neq P_{1} \subset P_{2}$ be prime ideals of V. Then by Theorem 17.3 (e) of [5, p. 190], P_{1} and P_{2} are branched, and so $P_{1}=\sqrt{a V}$ for some $a(\neq 0) \in V$. Assume that $O_{r}(a V)=$ $O_{r}(\sqrt{a V})\left(=R_{P_{1}}\right)$. Then $a V$ is an ideal of $R_{P_{1}}$, and so $a V$ is a P_{1}-primary ideal by the next Lemma 6. Hence, by Theorem 17.3 (a) of [5], we have $a V \cdot x V=a V$ for any $x \in V-P_{1}$, and so $x V=V$, that is, x is a unit of V. It follows that P_{1} is a maximal ideal of V, a contradiction. Thus we have $O_{r}(a V) \subset O_{r}(\sqrt{a V})$.

Lemma 6. Let $Q \subseteq P$ be ideals of R and assume that P is prime. Then the following are equivalent.
(1) Q is a P-primary ideal.
(2) $\sqrt{Q}=P$ and Q is an ideal of R_{P}.

Proof. (1) $\Rightarrow(2)$: Assume that Q is a P-primary ideal. Then $\sqrt{Q}=P$ by the definition. By Lemmas 2 and $4, O_{r}(Q)=O_{r}(\sqrt{Q})=O_{r}(P)=R_{P}$, and so Q is an ideal of R_{P}.
(2) \Rightarrow (1): Assume that the condition (2) holds and $x R y \subseteq Q$, where $x, y \in R$. If $x \notin P$, then we have $R_{P} x R_{P} \nsubseteq P$, and so $R_{P} x R_{P}=R_{P}$, because P is the unique maximal ideal of R_{P} by Properties (A) and (F). Since Q is an ideal of R_{P} and $R_{P}=R_{p}$ by Property (E), where $p=P \cap V$, we have $Q \supseteq$ $R_{P} x R y=R_{P} x R_{P} y=R_{P} y \ni y$. Similarly, if $y \notin P$, then $x \in Q$. Hence Q is a P-primary ideal.

Corollary 7. If Q_{1} and Q_{2} are P-primary ideals of R, then $Q_{1} Q_{2}$ is also a P-primary ideal (see [5]).

Proof. It is clear that $\sqrt{Q_{1} Q_{2}}=P$ and $Q_{1} Q_{2}$ is an R_{P}-ideal. Hence it is P-primary by Lemma 6 .

Lemma 8. Let Q be a P-primary ideal of R. Then for any ring T such that $R \subset T \subset R_{P}, Q$ is a P-primary ideal as an ideal of T.

Proof. First we note that Q is an ideal of T by Lemma 6. Let I^{\prime}, J^{\prime} be ideals of T, and assume that $J^{\prime} \nsubseteq P$. If $I^{\prime} J^{\prime} \subseteq Q$, then we have ($I^{\prime} \cap R$) $\left(J^{\prime} \cap R\right) \subseteq Q$ and $J^{\prime} \cap R \nsubseteq P$, because $J^{\prime}=\left(J^{\prime} \cap R\right) R_{J(T)}=\left(J^{\prime} \cap R\right) T$ by Property (F). Hence $I^{\prime} \cap R \subseteq Q$, and so $I^{\prime}=\left(I^{\prime} \cap R\right) T \subseteq Q T=Q$.

Proposition 9. For any ideal A of $R, P_{0}=\cap A^{n}$ is a prime ideal.
Proof. (i) First, we assume that A is a primary ideal. Let x, y be elements of R such that $x \notin P_{0}$ and $y \notin P_{0}$. Then $x \notin A^{n}$ and $y \notin A^{m}$ for some integers $n, m>0$, and so $R x R \supset A^{n}$ and $R y R \supset A^{m}$ by Property (A). By Property (D), $R x R=z_{1} T_{1}=T_{1} z_{1}$ and $R y R=z_{2} T_{2}=T_{2} z_{2}$, where $T_{1}=$ $O_{r}(R x R), T_{2}=O_{r}(R y R)$ and $z_{1}, z_{2} \in R$. Now we have $T_{1} \supseteq T_{2}$ or $T_{1} \subseteq T_{2}$ by Property (A). We may assume that $T_{1} \supseteq T_{2}$. Then $A^{n+m} \subseteq A^{n} R y R=$ $A^{n} T_{2} z_{2} \subseteq z_{1} T_{1} T_{2} z_{2}$. If $A^{n} T_{2} z_{2}=z_{1} T_{1} T_{2} z_{2}$, then $A^{n} T_{2}=z_{1} T_{1} T_{2}=z_{1} T_{1}$, because z_{2} is a regular element. Further we have $\sqrt{A}=\sqrt{A^{n}} \subseteq \sqrt{R x R}$, and so $O_{r}\left(A^{n}\right)=O_{r}(\sqrt{A}) \supseteq O_{r}(\sqrt{R x R}) \supseteq O_{r}(R x R)=T_{1} \supseteq T_{2}$ by Corollary 7 and Lemmas 3 and 4. Thus we have $A^{n}=A^{n} T_{2}=z_{1} T_{1}$, a contradiction. Hence $A^{n} T_{2} z_{2} \subset z_{1} T_{1} T_{2} z_{2}$, and so $A^{n+m} \subset z_{1} T_{1} T_{2} z_{2}=R x R y R$, and we have $x R y \nsubseteq$ P_{0}. Thus P_{0} is a prime ideal.
(ii) In general case, let $P=\sqrt{A}$. If P is not idempotent, then $A \supset P^{k}$ for some $k>0$, because if $A \subseteq P^{n}$ for all $n>0$, then $A \subseteq \cap P^{n} \subset P=\sqrt{A}$, and by case (i), $\cap P^{n}$ is a prime ideal, a contradiction. Hence $A \nsubseteq P^{k}$ for some k. Then by Property (A), we have $A \supset P^{k}$. It follows that $\cap P^{n} \supseteq \cap A^{n} \supseteq$ $\cap P^{k n} \supseteq \cap P^{n}$, and so $P_{0}=\cap A^{n}=\cap P^{n}$ is a prime ideal by case (i). If P is idempotent and $P=A$, then $P_{0}=\cap A^{n}=\cap P^{n}=P$ is a prime ideal. If P is idempotent and $P=\sqrt{A} \supset A$, then for any element $x \in P-A$, we have $R x R \nsubseteq A$, and so $A \subset R x R \subseteq R_{P} x R_{P} \subseteq P$. If $P=R_{P} x R_{P}$, then by Property (D) and Lemma 2, $P=z R_{P}$ for some $z \in P$, so we have $P^{2} \neq P$, a contradiction. Hence $P \supset R_{P} x R_{P}$. Put $Q=R_{P} x R_{P}$. Then Q is an R_{P}-ideal and $\sqrt{Q}=P$, because $P \supset Q \supset A$ and $P=\sqrt{A}$. So Q is a P-primary ideal by Lemma 6. Further, if $A \subset Q^{n}$ for all $n>0$, then $P \supset \cap Q^{n} \supseteq A$ and $\cap Q^{n}$ is a prime ideal by case (i). This is a contradiction, since $P=\sqrt{A}$. Hence
$A \supseteq Q^{k}$ for some $k>0$, and so $\cap Q^{n} \supseteq \cap A^{n} \supseteq \cap Q^{k n} \supseteq \cap Q^{n}$. Thus $P_{0}=\cap A^{n}=\cap Q^{n}$ is a prime ideal.

Lemma 10. Let A be an ideal of R.
(1) If $A^{k}=A^{k+1}$ for some $k>0$, then A is an idempotent prime ideal.
(2) Let P be a prime ideal of R such that $P \subset A$. Then $P \subseteq \cap A^{n}$.
(3) If B is an ideal of R and $A \subset \sqrt{B}$, then $A^{n} \subseteq B$ for some $n>0$.

Proof. (1) Put $P_{0}=\cap A^{n}$. If $A^{k}=A^{k+1}$, then $P_{0}=A^{k}$. By Proposition $9, P_{0}$ is a prime ideal. Hence $P_{0} \supseteq A$, and so $A=P_{0}$ is a prime ideal. Further, since $A=A^{k}, A$ is idempotent.
(2) If $A^{n} \subseteq P$ for some $n>0$, then $A \subseteq P$ and we have $A \subset A$, a contradiction. Hence $A^{n} \nsubseteq P$ for any $n>0$, and so $A^{n} \supseteq P$ for any $n>0$ by Property (A). Thus $P \subseteq \cap A^{n}$.
(3) If $A^{n} \nsubseteq B$ for any $n>0$, then $A^{n} \supset B$ and so $B \subseteq \cap A^{n}$. Since $\cap A^{n}$ is a prime ideal, by Proposition 9 , it follows that $\sqrt{B} \subseteq \cap A^{n} \subseteq A$, that is, $A \subset A$, a contradiction. Hence $A^{n} \subseteq B$ for some $n>0$.

Lemma 11. Let \& be a set of prime ideals of R and let $P=\cup_{p^{\prime} \in, \mathcal{S}} P^{\prime}$. Then
(1) $O_{r}(P)=\cap_{p^{\prime} \in \mathscr{S}} O_{r}\left(P^{\prime}\right)$.
(2) P is a prime ideal.

Proof. (1) Let $P^{\prime} \in S$. Since $\sqrt{P} \supseteq P \supseteq P^{\prime}$, we have $O_{r}(P) \subseteq$ $O_{r}(\sqrt{P}) \subseteq O_{r}\left(P^{\prime}\right)$ by Lemmas 3 and 4 . Hence $O_{r}(P) \subseteq \cap O_{r}\left(P^{\prime}\right)$. Conversely, let $x \in \cap O_{r}\left(P^{\prime}\right)$ and let $a \in P$. Since $a \in P^{\prime}$ for some $P^{\prime} \in \mathscr{\&}$, it follows that $a x \in P^{\prime} x \subseteq P^{\prime} \subseteq P$, and so $P x \subseteq P$. Hence $x \in O_{r}(P)$.
(2) Let $x, y \notin P$ and let $P^{\prime} \in \&$. Then $x, y \notin P^{\prime}$. Hence, by Properties (A) and (D), $P^{\prime} \subset R x R=z_{1} T_{1}=T_{1} z_{1}$ and $P^{\prime} \subset R y R=z_{2} T_{2}=T_{2} z_{2}$, where $T_{1}=O_{r}(R x R), T_{2}=O_{r}(R y R)$ and $z_{1}, z_{2} \in R$. We may assume that $T_{1} \supseteq$ T_{2} by Property (A). Then, since P^{\prime} is a prime ideal of R, we have $P^{\prime} \nsupseteq R x R \cdot R y R=z_{1} T_{1} T_{2} z_{2}=z_{1} T_{1} z_{2}=T_{1} z_{1} z_{2}$. Hence $z_{1} z_{2} \notin P^{\prime}$, because $T_{1}=O_{r}(R x R) \subseteq O_{r}(\sqrt{R x R}) \subseteq O_{r}\left(P^{\prime}\right)$ by Lemmas 3 and 4 . Thus $z_{1} z_{2} \notin P$, and so $x R y \nsubseteq P$.

Now, concerning branched and unbranched ideals, we have the following.
Theorem 12. Let P be a prime ideal of R, and let $P_{0}=\cap P^{n}$.
(1) If P is branched and $P \neq P^{2}$, then
(i) $\left\{P^{k} \mid k>0\right\}$ is the full set of P-primary ideals of R,
(ii) $P=z T=T z$ for some $z \in P$, where $T=O_{r}(P)$,
(iii) there is no prime ideal P^{\prime} such that $P \supset P^{\prime} \supset P_{0}$ and P_{0} is a prime ideal.
(2) If P is branched and $P=P^{2}$, then
(i) for any P-primary ideal $Q(\neq P), \cap Q^{n}=\cap\left\{Q_{\lambda} \mid Q_{\lambda}: P\right.$-primary ideal\},
(ii) $Q_{0}:=\cap\left\{Q_{\lambda} \mid Q_{\lambda}: P\right.$-primary ideal $\}$ is a prime ideal,
(iii) there is no prime ideal P^{\prime} such that $P \supset P^{\prime} \supset Q_{0}$.
(iv) $P=\cup\left\{Q_{\lambda} \mid Q_{\lambda}: P\right.$-primary with $\left.Q_{\lambda} \neq P\right\}$.
(3) The following are equivalent:
(i) P is branched.
(ii) $P=\sqrt{A}$ for some ideal $A(\neq P)$.
(iii) $P=\sqrt{R a R}$ for some $a \in R$.
(iv) P is not the union of prime ideals P^{\prime} such that $P^{\prime} \subset P$.
(v) There is a prime ideal M such that $M \subset P$ and there are no prime ideals P^{\prime} such as $M \subset P^{\prime} \subset P$.
(4) P is unbranched if and only if $P=\cup\left\{P_{\lambda} \mid P_{\lambda}(\subset P)\right.$: prime ideal $\}$.

Proof. (1) By Corollary 7, P^{k} is a P-primary ideal for any $k>0$. Conversely, let Q be any P-primary ideal of R. Then we have $P^{2} \subset P=$ \sqrt{Q}. By Lemma 10 (3), we have $\left(P^{2}\right)^{n} \subseteq Q$ for some integer $n>0$. Let k be the smallest integer such as $P^{k} \subseteq Q$. Then $P^{k-1} \nsubseteq Q$ and so there is some $y \in P^{k-1}-Q$. From Property (D), there exists $z \in R$ such that $R y R=z T$ $=T z$, where $T=O_{r}(R y R)$. As $\sqrt{R y R}=P, T \subseteq O_{r}(\sqrt{R y R})=O_{r}(Q)$ by Lemma 4. Put $A=Q z^{-1}$. Then $A \subseteq z T z^{-1}=T$, and so A is an ideal of T. On the other hand, $Q=A z T$ and $z T \nsubseteq Q$. It follows from Lemma 8 that $P \supseteq A$. Hence $Q=A z T \subseteq P R y R \subseteq P P^{k-1}=P^{k}$, and so $Q=P^{k}$. Thus (i) is proved. (ii) follows from Lemma 8 of [2, §2]. To prove (iii), let P^{\prime} by any prime ideal such that $P^{\prime} \subset P$. Then by Lemma 10 (2), we have $P^{\prime} \subseteq \cap P^{n}$ $=P_{0}$. Hence there is no prime ideal P^{\prime} between P and P_{0}, and P_{0} is a prime ideal by Proposition 9.
(2) By Corollary 7, Q^{n} is a P-primary ideal, and so $\cap Q^{n} \supseteq \cap Q_{\lambda}$. Conversely, for any P-primary ideal Q_{λ}, we have $Q \subset P=\sqrt{Q_{\lambda}}$. By Lemma 10 (3), $Q_{\lambda} \supseteq Q^{n}$ for some $n>0$, and so $\cap Q_{\lambda} \supseteq \cap Q^{n}$. Hence we have $\cap Q_{\lambda}=\cap Q^{n}$. From this fact and Proposition 9, (ii) follows. To prove (iii), let P^{\prime} be a prime ideal such that $P^{\prime} \subset P$. Then, for any P-primary ideal Q_{λ}, we have $Q_{\lambda} \not \subset P^{\prime}$, because $\sqrt{Q_{\lambda}}=P$. Hence $P^{\prime} \subseteq Q_{\lambda}$, and so $P^{\prime} \subseteq \cap Q_{\lambda}=$ Q_{0}. To prove (iv), let $Q=\cup\left\{Q_{\lambda} \mid Q_{\lambda}: P\right.$-primary with $\left.Q_{\lambda} \neq P\right\}$. Then it is P-primary by Lemma 6. Assume that $P \supset Q$. Then, for any element $x \in P$ with $x \notin Q$, we have $P \supseteq Q_{1}=R_{P} x R_{P} \supset Q$. Since Q_{1} is P-primary by Lemma 6, it must be equal to P. Then $P=R_{P} x R_{P}=z R_{P}=R_{P} z$ by Property (D) and Lemma 2, which contradicts to $P=P^{2}$. Thus $P=Q$.
(3) (i) \Rightarrow (ii) is clear.
(ii) \Rightarrow (iii) : For $a \in P-A$, we have $A \nsupseteq R a R$, and so $A \subset R a R \subseteq P$ by Property (A). Hence $P=\sqrt{A} \subseteq \sqrt{R a R} \subseteq P$, and so $P=\sqrt{R a R}$.
(iii) \Rightarrow (iv): Assume that $P=\sqrt{R a R}$. For any prime ideal P^{\prime} such as $P^{\prime} \subset P$, we have $a \notin P^{\prime}$, and so $a \in P-\cup\left\{P^{\prime}\right.$: prime ideal $\left.\mid P^{\prime} \subset P\right\}$.
(iv) $\Rightarrow(\mathrm{v}):$ By Lemma $11, \cup\left\{P^{\prime}:\right.$ prime ideal $\left.\mid P^{\prime} \subset P\right\}$ is a prime ideal. So we may take this prime ideal as M.
$(\mathrm{v}) \Rightarrow(\mathrm{i})$: If P is not idempotent, then by Corollary $7, P^{2}$ is a P-primary ideal which is different from P. In the case P is idempotent, let $x \in P-M$ and put $Q=R x R$. Then we have $Q_{P} \subseteq P$, because $P=J\left(R_{P}\right)$. By Property (D), there is a $z \in R_{P}$ such that $Q_{P}=R_{P} x R_{P}=z T=T z$, where $T=$ $O_{r}\left(R_{P} x R_{P}\right)$, and so Q_{P} is not idempotent, hence $Q_{P} \subset P$. Further, since $Q \nsubseteq M$, we have $M \subset Q_{P} \subset P$ by Property (A), and hence $\sqrt{Q_{P}}=P$. Thus Q_{P} is a P-primary ideal of R which is different from P by Lemma 6.
(4) follows immediately from (3).

Corollary 13. Let P be a prime ideal R and let $p=P \cap V$. Then
(1) p is branched if and only if P is branched.
(2) p is idempotent if and only if P is idempotent. In this case, we have $P=p R$.

Proof. (1) Assume that p is unbranched. Then $p=U\left\{p_{\lambda} \mid p_{\lambda}(\subset p)\right.$: prime ideal\} by Theorem 12 (4). By Theorem 1 (2) of $[3, \S 3]$, there is a prime ideal P_{λ} of R such that $P_{\lambda} \cap V=p_{\lambda}$ and $P_{\lambda} \subset P$. Then $\cup P_{\lambda}$ is a prime ideal of R by Lemma 11, and $\left(\cup P_{\lambda}\right) \cap V=\cup\left(P_{\lambda} \cap V\right)=\cup p_{\lambda}$. Hence $\cup P_{\lambda}=P$ by Theorem $1(2)$ of $[3, \S 2]$, and so P is unbranched by Theorem 12 (4). The converse is proved similarly.
(2) If p is idempotent, then $p R$ is an idempotent ideal of R, and so $p R$ is a prime ideal of R by Lemma 10 (1). Further, since $p=P \cap V \supseteq$ $p R \cap V \supseteq p$, we have $P=p R$ by Theorem 1 (2) of [3, §2], and hence P is idempotent. Conversely assume that P is idempotent. Then, by Theorem 1 (6) of $[3, \S 2]$, we have $P=p R$, and so $p R=P=P^{2}=p^{2} R$. Hence we have $p=p^{2}$ by following Lemma 14 .

Lemma 14. Let \mathscr{A} and \mathscr{B} be ideals of V. If $\mathscr{A} R=\mathscr{B} R$, then $\mathscr{A}=\mathscr{B}$.
Proof. Let $a(\neq 0) \in \mathscr{A}$. Then $a=\sum_{i=1}^{n} b_{i} r_{i}$, where $b_{i} \in \mathscr{B}, r_{i} \in R$. Since V is a valuation domain, we have $b_{1} V+\cdots+b_{n} V=b V$ for some $b \in \mathscr{B}$. Let $b_{i}=b v_{i}$, where $v_{i} \in V$. Then $a=\sum_{i=1}^{n} b_{i} r_{i}=\sum_{i=1}^{n} b v_{i} r_{i}=$ $b\left(\sum_{i=1}^{n} v_{i} r_{i}\right)$, and so $b^{-1} a=\sum_{i=1}^{n} v_{i} r_{i} \in K \cap R=V$. Hence $a=b\left(\sum_{i=1}^{n} v_{i} r_{i}\right)$ $\in b V \subseteq \mathscr{B}$, and so we have $\mathscr{A} \subseteq \mathscr{B}$. The converse inclusion is proved similarly.

Finally, we give an example of a non-commutative valuation ring R such that there exists some prime ideal P of R with $P \supset p R$, where $p=P \cap V$.

Example 15 (see Lemma 1.3 of [4]). Let $V=Z_{2}$, the localization of the ring of integers Z with respect to $2 Z$ and let $K=Q$, the field of rational numbers. Let $\Sigma=D_{\tau}=K \oplus K i \oplus K j \oplus K i j$, where $i^{2}=-1, j^{2}=\tau$, $i j=-j i$ and $\tau=p_{1} \cdots p_{t}, p_{1}, \cdots, p_{t}$ being distinct primes $\equiv 3(\bmod 4)$. In the case $\tau \equiv-1(\bmod 4), R=V \oplus V i \oplus V j \oplus V t$ where $t=(1+i+j$ $+i j) / 2$, is a maximal order with $J(R)=(1+i) R$, and $R / J(R)$ is a division ring by Lemma 1.3 of [4]. Further we have $J(R)^{2}=2 R$ and $J(R) \cap$ $V=2 V$, and so $J(R) \supset J(R)^{2}=(J(R) \cap V R$. On the other hand, by Corollary to Proposition 3.3 of [1], R is a local Dedekind ring, and so R is a non-commutative valuation ring.

References

[1] Auslander, M., and Goldman, O.: Maximal orders. Trans. Amer. Math. Soc., 97, 1-24 (1960).
[2] Dubrovin, N. I.: Noncommutative valuation rings. Trans. Moscow Math. Soc., 1(45), 273-287 (1984).
[3] -: Noncommutative valuation rings in simple finite dimensional algebras over a field. Math. USSDR Sbornik, 51(2), 493-505 (1985).
[4] Harada, M.: Hereditary orders in generalized quaternions D_{τ}. J. Math. Osaka City Univ., 14(2), 71-81 (1963).
[5] Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker (1972).

[^0]: *) Naruto University of Education.
 **) Department of Mathematics, Tokushima University.
 **) Department of Mathematics, Shimane University.

