9. A Note on Jacobi Sums

By Masanari KidA and Takashi Ono
Department of Mathematics, The Johns Hopkins University, U.S.A
(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1993)

Introduction. Let p be an odd prime, F_{p} be the finite field with p elements and χ be a character of order l of the multiplicative group F_{p}^{\times}. Consider a Jacobi sum

$$
J=\sum_{x \in F_{p}} \chi(x) \chi(1-x), \quad \chi(0)=0 .
$$

Obviously J is an integer in the l th cyclotomic fieid k_{l}. By machine computation, the older author observed that $\boldsymbol{Q}(J)=k_{l}$ for small p and l. In this paper, we shall prove a theorem which explains (more than enough) the observation.
§1. The group $G(\mathfrak{p})$. For a positive integer m, let ζ_{m} be a primitive m th root of $1, k_{m}=\boldsymbol{Q}\left(\zeta_{m}\right)$ and $\mathfrak{o}_{m}=\boldsymbol{Z}\left[\zeta_{m}\right]$. For a prime ideal \mathfrak{p} of \mathfrak{o}_{m} such that $\mathfrak{p} \nmid m$, let $\chi_{\mathfrak{p}}(x)=(x / \mathfrak{p})_{m}$, the m th power residue symbol, $x \in \mathrm{o}_{m}, \mathfrak{p} \chi$ x, i.e., $\chi_{p}(x \bmod \mathfrak{p})$ is the unique m th root of 1 such that

$$
\begin{equation*}
\chi_{\mathfrak{p}}(x \bmod \mathfrak{p}) \equiv x^{\frac{q-1}{m}}, \quad(\bmod \mathfrak{p}) \tag{1}
\end{equation*}
$$

where $q=p^{f}=N \mathfrak{p}$ is the cardinality of $\mathfrak{o}_{m} / \mathfrak{p}$. One sees that $\chi_{\mathfrak{p}}$ is a character of $\left(\mathrm{o}_{m} / \mathfrak{p}\right)^{\times}$of order m. We put $\chi_{\mathfrak{p}}(0)=0$. As a nontrivial additive character of $\mathfrak{o}_{m} / \mathfrak{p}=\boldsymbol{F}_{q}$, we adopt the function $\psi_{\mathfrak{p}}(x)=\zeta_{p} T(x)$, where T is the trace map from \boldsymbol{F}_{q} to \boldsymbol{F}_{p}.

Consider the Gauss sum

$$
\begin{equation*}
g(\mathfrak{p})=\sum_{x \in \mathfrak{o}_{m} / \mathfrak{p}} \chi_{\mathfrak{p}}(x) \psi_{\mathfrak{p}}(x) \in \mathfrak{o}_{m p} . \tag{2}
\end{equation*}
$$

Note that $k_{m p}=k_{m} k_{p}, k_{m} \cap k_{p}=\boldsymbol{Q}$; hence we can identify two Galois groups $G\left(k_{m} / \boldsymbol{Q}\right)$ and $G\left(k_{m p} / k_{p}\right)$. For an integer t with $(t, m)=1$, we denote by σ_{t} the element of $G\left(k_{m} / \boldsymbol{Q}\right)=G\left(k_{m p} / k_{p}\right)$ such that $\zeta_{m}^{\sigma_{t}}=\zeta_{m}^{t}$. We denote by μ_{n} the group of nth roots of 1 . For a number field K, we denote by $\mu(K)$ group of roots of 1 in K. For the cyclotomic field $k_{m}=\boldsymbol{Q}\left(\mu_{m}\right)$, we know that $\mu\left(k_{m}\right)=\mu_{m}$ or $\mu_{2 m}$ according as m is even or odd.

Consider the group

$$
\begin{equation*}
G(\mathfrak{p})=\left\{\sigma_{t} \in G\left(k_{m} / \boldsymbol{Q}\right) ; g(\mathfrak{p})^{1-\sigma_{t}} \in \mu\left(k_{m}\right)\right\} \tag{3}
\end{equation*}
$$

For $\boldsymbol{u} \in \boldsymbol{F}_{p}$, put

$$
\begin{equation*}
A_{u}=\sum_{T(x)=u} \chi_{p}(x) \tag{4}
\end{equation*}
$$

One sees easily that

$$
\begin{equation*}
A_{u}=\chi_{p}(u) A_{1}, \quad \text { for } u \neq 0 \tag{5}
\end{equation*}
$$

From (2), (4), (5), we have

$$
\begin{equation*}
g(\mathfrak{p})=\sum_{u \in \boldsymbol{F}_{p}} A_{u} \zeta_{p}^{u}=A_{0}+A_{1} \sum_{u \neq 0} \chi_{p}(u) \zeta_{p}^{u} \tag{6}
\end{equation*}
$$

Since $1=-\sum_{u \neq 0} \zeta_{p}^{u}$, (6) implies that

$$
\begin{equation*}
g(\mathfrak{p})=\sum_{u \neq 0}\left(\chi_{p}(u) A_{1}-A_{0}\right) \zeta_{p}^{u} \tag{7}
\end{equation*}
$$

Since $\left\{\zeta_{p}^{u}\right\}_{u \neq 0}$ is linearly independent over k_{m}, it follows from (3), (7) that

$$
\begin{equation*}
G(\mathfrak{p})=\left\{\sigma_{t} \in G\left(k_{m} / \boldsymbol{Q}\right) ;\left(\chi_{\mathfrak{p}}(u) A_{1}-A_{0}\right)^{\sigma_{t}}=\alpha_{t}\left(\chi_{\mathfrak{p}}(u) A_{1}-A_{0}\right),\right. \tag{8}
\end{equation*}
$$

$$
\left.\alpha_{t} \in \mu\left(k_{m}\right) \text { for all } u \in \boldsymbol{F}_{p}^{\times}\right\}
$$

If, in particular, $f=1$, i.e., $q=p$, then $A_{1}=1, A_{0}=0$, and the condition (8) boils down to

$$
\begin{equation*}
\chi_{\mathfrak{p}}(u)^{\sigma_{t}}=\alpha_{t} \chi_{\mathfrak{p}}(u), \text { for all } u \in \boldsymbol{F}_{p}^{\times} \tag{9}
\end{equation*}
$$

Putting $u=1$ in (9), we get $\alpha_{t}=1$, hence $\chi_{\mathfrak{p}}(u)^{\sigma_{t}}=\chi_{\mathfrak{p}}(u)^{t}=\chi_{\mathfrak{p}}(u)$ for all $u \in \boldsymbol{F}_{p}{ }^{\times}$, i.e., $\sigma_{t}=1$. Therefore we conclude that

$$
\begin{equation*}
G(\mathfrak{p})=\{1\} \quad \text { if } f=1 \tag{10}
\end{equation*}
$$

§2. The Jacobi sum $J_{n}(\mathfrak{p})$. Notation being as in $\S 1$, assume that $m>1$; hence $\chi_{\mathfrak{p}}$ is nontrivial. From (1) one sees that

$$
\begin{equation*}
\chi_{p^{\sigma}}\left(x^{\sigma}\right)=\chi_{\mathfrak{p}}(x)^{\sigma}, \quad \text { for all } \sigma \in G\left(k_{m} / \boldsymbol{Q}\right) . \tag{11}
\end{equation*}
$$

For a natural number n such that $(n, m)=1$, we put

$$
\begin{equation*}
J_{n}(\mathfrak{p})=g(\mathfrak{p})^{n} / g(\mathfrak{p})^{\sigma_{n}}=g(\mathfrak{p})^{n-\sigma_{n}} . \tag{12}
\end{equation*}
$$

Notice that $J_{n}(\mathfrak{p})$ is a special case of the Jacobi sum of n variables

$$
\begin{equation*}
J_{\left(a_{1}, \ldots, a_{n}\right)}(\mathfrak{p})=\sum_{\substack{x_{1}+\ldots+x_{n}=1 \\ x_{1} \in \mathfrak{o}_{m} \mathfrak{p}}} \chi_{\mathfrak{p}}^{a_{1}}\left(x_{1}\right) \ldots \chi_{\mathfrak{p}}^{a_{n}}\left(x_{n}\right) \tag{13}
\end{equation*}
$$

where $a_{i} \in \boldsymbol{Z}$; the relation (12) is a consequence of

$$
\begin{equation*}
g_{a_{1}}(\mathfrak{p}) \cdots g_{a_{n}}(\mathfrak{p})=J_{\left(a_{1}, \ldots, a_{n}\right)}(\mathfrak{p}) g_{a_{1}+\ldots+a_{n}}(\mathfrak{p}) \tag{14}
\end{equation*}
$$

which holds whenever $a_{i}, 1 \leqq i \leqq n$, and $a_{1}+\ldots+a_{n}$ are all $\not \equiv 0(\bmod$ $m) .{ }^{1)}$ Needless to say, we have set in (14),

$$
\begin{equation*}
g_{t}(\mathfrak{p})=\sum_{x \in \mathfrak{o}_{m} / \mathfrak{p}} \chi_{\mathfrak{p}}^{t}(x) \psi_{\mathfrak{p}}(x), \quad t \in \boldsymbol{Z} \tag{15}
\end{equation*}
$$

From (13) we see that $J_{n}(\mathfrak{p})=J_{(1, \ldots, 1)}(\mathfrak{p})$ is in \mathfrak{o}_{m}. We are interested in the subfield $\boldsymbol{Q}\left(J_{n}(\mathfrak{p})\right)$ of k_{m}.

Proposition 1. $\boldsymbol{Q}\left(J_{n}(p)\right)$ is contained in the decomposition field of \mathfrak{p}.
Proof. From (11), (13), it follows that $J_{n}\left(\mathfrak{p}^{\sigma}\right)=J_{n}(\mathfrak{p})^{\sigma}$ for any $\sigma \in$ $G\left(k_{m} / \boldsymbol{Q}\right)$. In particular, we have $J_{n}(\mathfrak{p})=J_{n}(\mathfrak{p})^{\sigma}$ if $\mathfrak{p}=\mathfrak{p}^{\sigma}$. \quad Q.E.D.

Proposition 2. If $p \neq 2$ and $n \neq 1(\bmod p)$, then $\boldsymbol{Q}\left(J_{n}(\mathfrak{p})\right)$ contains the fixed field of the group $G(\mathfrak{p})$ defined by (3).

Proof. Let $\sigma=\sigma_{t}$ be an element of $G\left(k_{m} / \boldsymbol{Q}\right)$ such that $J_{n}(p)^{\sigma}=$ $J_{n}(\mathfrak{p})$. Then we have $\left(g(\mathfrak{p})^{n-\sigma_{n}}\right)^{\sigma_{t}}=g(\mathfrak{p})^{n-\sigma_{n}}$, so $g_{t}(\mathfrak{p})^{n-\sigma_{n}}=g(\mathfrak{p})^{n-\sigma_{n}}$, or (16) $\quad \alpha_{t}^{n}=\alpha_{t}^{\sigma_{n}} \quad$ with $\alpha_{t}=g_{t}(p) / g(p)$.

Since $G\left(k_{m} / \boldsymbol{Q}\right)$ is of order $\varphi(m)$, (16) implies that

$$
\begin{equation*}
\alpha_{t}^{n \varphi(m)}-\alpha_{t}=\alpha_{t}\left(\alpha_{t}^{n \varphi(m)-1}-1\right)=0 \tag{17}
\end{equation*}
$$

Since $\alpha_{t} \neq 0$, (17) implies that $\alpha_{t} \in \mu\left(k_{m p}\right)$. Hence we have $\alpha_{t}= \pm \zeta_{m}^{i} \zeta_{p}^{j}, i$, $j \in \boldsymbol{Z}$. In view of (16), we have $(\pm 1)^{n} \zeta_{m}^{n i} \zeta_{p}^{n j}= \pm \zeta_{m}^{n i} \zeta_{p}^{j}$, or $\zeta_{p}^{2 n j}=\zeta_{p}^{2 j}$. Since $p \not \equiv 2$ and $n \not \equiv 1(\bmod p)$, we have $j \equiv 0(\bmod p)$, so $\alpha_{t}= \pm \zeta_{m}^{i} \in$ $\mu\left(k_{m}\right)$; in other words, we have $g(\mathfrak{p})^{1-\sigma_{t}} \in \mu\left(k_{m}\right)$, i.e., $\sigma_{t} \in G(\mathfrak{p})$. Q.E.D.
${ }^{1)}$ As for basic facts on Gauss sums and Jacobi sums, see, e.g., a beautifully written textbook [1].

The following Theorem follows from (10) and Propositions; it justifies the observation more than enough.

Theorem. Let $k_{m}, m>1$, be the m th cyclotomic field, p an odd prime, $p \not x$ m, n a positive integer such that $(n, m)=1$ and $n \not \equiv 1(\bmod p)$. Let \mathfrak{p} be a prime ideal in k_{m} such that $\mathfrak{p} \mid p$. Let $J_{n}(\mathfrak{p})$ be the Jacobi sum defined by (12) (or by (13) with $\left.a_{i}=1,1 \leqq i \leqq n\right)$. Then $k_{m}=\boldsymbol{Q}\left(J_{n}(\mathfrak{p})\right)$ if and only if p splits completely in k_{m}, i.e., $p \equiv 1(\bmod m)$.

Remark. Notation being as in Theorem, consider the group (18) $\quad G\left(J_{n}(\mathfrak{p})\right)=\left\{\sigma \in G\left(k_{m} / \boldsymbol{Q}\right) ; J_{n}(\mathfrak{p})^{\sigma}=J_{n}(\mathfrak{p})\right\}$.

Proposition 1 means that

$$
\begin{equation*}
G\left(J_{n}(\mathfrak{p})\right) \supseteqq Z(\mathfrak{p}), \tag{19}
\end{equation*}
$$

where $Z(\mathfrak{p})$ is the decomposition group of \mathfrak{p}. On the other hand, Theorem means that
(20)

$$
G\left(J_{n}(\mathfrak{p})\right)=\{1\} \Leftrightarrow Z(\mathfrak{p})=\{1\}
$$

Therefore we do not have yet a complete knowledge about the field $\boldsymbol{Q}\left(J_{n}(\mathfrak{p})\right)$ when $Z(\mathfrak{p}) \neq\{1\}$, i.e., when $f>1$. Here is an illustrative example. Let $m=5$. Hence $\varphi(m)=4$ and only possible $f>1$ are $f=2$ and $f=4$. If $f=4$, then $Z(p)=G\left(J_{n}(p)\right)=G\left(k_{5} / \boldsymbol{Q}\right)$, no problem. If $f=2$, the decomposition field of \mathfrak{p} is $k_{5}{ }^{+}$, the maximal real subfield of k_{5}. Since $J_{n}(p)$ is contained in the decomposition field of \mathfrak{p} by (19), we have $J_{n}(\mathfrak{p}) \in \boldsymbol{R}$. Now, since $J_{n}(\mathfrak{p})^{2}=\left|J_{n}(\mathfrak{p})\right|^{2}=(N \mathfrak{p})^{n-1}=p^{2(n-1)}$, we have $J_{n}(\mathfrak{p})= \pm p^{n-1} \in \boldsymbol{Q}$; hence $G\left(J_{n}(\mathfrak{p})\right)=G\left(k_{5} / \boldsymbol{Q}\right) \neq Z(\mathfrak{p})$. Let $n=6$ (with $m=5$, still). Then $J_{6}(\mathfrak{p})=g(\mathfrak{p})^{6-\sigma_{6}}=g(\mathfrak{p})^{6-\sigma_{1}}=g(\mathfrak{p})^{5}$. Hence $g(\mathfrak{p})^{5} \in \boldsymbol{Q}$, but the decomposition field of \mathfrak{p} is $\boldsymbol{k}_{5}^{+} \neq \boldsymbol{Q}$. ${ }^{2)}$

Reference

[1] Ireland, K., and Rosen, M.: A Classical Introduction to Modern Number Theory. 2nd ed. , Springer-Verlag (1990).
${ }^{2)}$ This provides us with counterexample to Exercise 10, p. 226 in [1].

