9. A Note on Jacobi Sums

By Masanari KIDA and Takashi ONO

Department of Mathematics, The Johns Hopkins University, U.S.A (Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1993)

Introduction. Let p be an odd prime, F_p be the finite field with pelements and χ be a character of order l of the multiplicative group F_{b}^{\times} . Consider a Jacobi sum

$$J = \sum_{x \in F_p} \chi(x) \chi(1-x), \quad \chi(0) = 0.$$

Obviously J is an integer in the lth cyclotomic field k_l . By machine computation, the older author observed that $Q(J) = k_l$ for small p and l. In this paper, we shall prove a theorem which explains (more than enough) the observation.

§1. The group $G(\mathfrak{p})$. For a positive integer *m*, let ζ_m be a primitive *mth* root of 1, $k_m = Q(\zeta_m)$ and $\mathfrak{o}_m = \mathbb{Z}[\zeta_m]$. For a prime ideal \mathfrak{p} of \mathfrak{o}_m such that $\mathfrak{p} \not\prec m$, let $\chi_{\mathfrak{p}}(x) = (x/\mathfrak{p})_m$, the *m*th power residue symbol, $x \in \mathfrak{o}_m$, $\mathfrak{p} \not\prec$ x, i.e., $\chi_{p}(x \mod p)$ is the unique *m*th root of 1 such that

 $\chi_{\mathfrak{p}}(x \mod \mathfrak{p}) \equiv x^{\frac{q-1}{m}}, \pmod{\mathfrak{p}},$ (1)

where $q = p' = N\mathfrak{p}$ is the cardinality of $\mathfrak{o}_m/\mathfrak{p}$. One sees that $\chi_\mathfrak{p}$ is a character of $(\mathfrak{o}_m/\mathfrak{p})^{\times}$ of order *m*. We put $\chi_{\mathfrak{p}}(0) = 0$. As a nontrivial additive character of $\mathfrak{o}_m/\mathfrak{p} = F_q$, we adopt the function $\psi_\mathfrak{p}(x) = \zeta_p T(x)$, where T is the trace map from F_q to F_p .

Consider the Gauss sum

(2)
$$g(\mathfrak{p}) = \sum_{x \in \mathfrak{o}_m/\mathfrak{p}} \chi_{\mathfrak{p}}(x) \psi_{\mathfrak{p}}(x) \in \mathfrak{o}_{mp}.$$

Note that $k_{mp} = k_m k_p$, $k_m \cap k_p = Q$; hence we can identify two Galois groups $G(k_m/Q)$ and $G(k_{mp}/k_p)$. For an integer t with (t, m) = 1, we denote by σ_t the element of $G(k_m/Q) = G(k_{mp}/k_p)$ such that $\zeta_m^{\sigma_t} = \zeta_m^t$. We denote by μ_n the group of *n*th roots of 1. For a number field K, we denote by $\mu(K)$ group of roots of 1 in K. For the cyclotomic field $k_m = Q(\mu_m)$, we know that $\mu(k_m) = \mu_m$ or μ_{2m} according as m is even or odd.

Consider the group

(3)
$$G(\mathfrak{p}) = \{\sigma_t \in G(k_m/Q) ; g(\mathfrak{p})^{1-\sigma_t} \in \mu(k_m)\}.$$

For $u \in F_p$, put
(4) $A_u = \sum_{T(x)=u} \chi_p(x).$

One sees easily that

 $A_u = \chi_{\mathfrak{p}}(u)A_1, \quad \text{for } u \neq 0.$ (5)From (2), (4), (5), we have (6) $g(\mathfrak{p}) = \sum_{u \in F_{p}} A_{u} \zeta_{p}^{u} = A_{0} + A_{1} \sum_{u \neq 0} \chi_{\mathfrak{p}}(u) \zeta_{p}^{u}.$ Since $1 = -\sum_{u \neq 0} \zeta_{p}^{u}$, (6) implies that

A Note on Jacobi Sums

(7)
$$g(\mathfrak{p}) = \sum_{u \neq 0} \left(\chi_{\mathfrak{p}}(u) A_1 - A_0 \right) \zeta_{\mathfrak{p}}^u.$$

Since $\{\zeta_p^u\}_{u\neq 0}$ is linearly independent over k_m , it follows from (3), (7) that (8) $G(\mathfrak{p}) = \{\sigma_t \in G(k_m/Q) ; (\chi_{\mathfrak{p}}(u)A_1 - A_0)^{\sigma_t} = \alpha_t(\chi_{\mathfrak{p}}(u)A_1 - A_0), \alpha_t \in \mu(k_m) \text{ for all } u \in F_p^{\times} \}.$

If, in particular, f = 1, i.e., q = p, then $A_1 = 1$, $A_0 = 0$, and the condition (8) boils down to

(9) $\chi_{\mathfrak{p}}(u)^{\sigma_t} = \alpha_t \chi_{\mathfrak{p}}(u)$, for all $u \in \mathbf{F}_p^{\times}$. Putting u = 1 in (9), we get $\alpha_t = 1$, hence $\chi_{\mathfrak{p}}(u)^{\sigma_t} = \chi_{\mathfrak{p}}(u)^t = \chi_{\mathfrak{p}}(u)$ for all $u \in \mathbf{F}_p^{\times}$, i.e., $\sigma_t = 1$. Therefore we conclude that (10) $G(\mathfrak{p}) = \{1\}$ if f = 1.

§2. The Jacobi sum
$$J_n(\mathfrak{p})$$
. Notation being as in §1, assume that $m > 1$; hence χ_n is nontrivial. From (1) one sees that

(11) $\chi_{\mathfrak{p}^{\sigma}}(x^{\sigma}) = \chi_{\mathfrak{p}}(x)^{\sigma}$, for all $\sigma \in G(k_m/Q)$. For a natural number *n* such that (n, m) = 1, we put (12) $I_n(\mathfrak{p}) = g(\mathfrak{p})^n / g(\mathfrak{p})^{\sigma_n} = g(\mathfrak{p})^{n-\sigma_n}$.

(12) $J_n(\mathfrak{p}) = g(\mathfrak{p})^n / g(\mathfrak{p})^{\sigma_n} = g(\mathfrak{p})^{n-\sigma_n}$. Notice that $I_n(\mathfrak{p})$ is a special case of the Jacobi sum of n variables

(13)
$$J_{(a_1,\ldots,a_n)}(\mathfrak{p}) = \sum_{x_1+\ldots+x_n=1}^{\infty} \chi_{\mathfrak{p}}^{a_1}(x_1)\ldots\chi_{\mathfrak{p}}^{a_n}(x_n),$$

$$x_1 \in \mathfrak{o}_m/\mathfrak{p}$$

where $a_i \in \mathbb{Z}$; the relation (12) is a consequence of (14) $g_{a_1}(\mathfrak{p}) \cdots g_{a_n}(\mathfrak{p}) = J_{(a_1,\dots,a_n)}(\mathfrak{p})g_{a_1+\dots+a_n}(\mathfrak{p}),$ which holds whenever $a_{i_1} \leq i \leq m$ and $a_{i_1} + \dots + a_{i_n}$ are all

which holds whenever a_i , $1 \leq i \leq n$, and $a_1 + \ldots + a_n$ are all $\neq 0 \pmod{m}$.¹⁾ Needless to say, we have set in (14),

(15)
$$g_t(\mathfrak{p}) = \sum_{x \in \mathfrak{o}_m/\mathfrak{p}} \chi_{\mathfrak{p}}^t(x) \, \psi_{\mathfrak{p}}(x), \quad t \in \mathbb{Z}.$$

From (13) we see that $J_n(\mathfrak{p}) = J_{(1,\dots,1)}(\mathfrak{p})$ is in \mathfrak{o}_m . We are interested in the subfield $Q(J_n(\mathfrak{p}))$ of k_m .

Proposition 1. $Q(J_n(p))$ is contained in the decomposition field of \mathfrak{p} .

Proof. From (11), (13), it follows that $J_n(\mathfrak{p}^{\sigma}) = J_n(\mathfrak{p})^{\sigma}$ for any $\sigma \in G(k_m/Q)$. In particular, we have $J_n(\mathfrak{p}) = J_n(\mathfrak{p})^{\sigma}$ if $\mathfrak{p} = \mathfrak{p}^{\sigma}$. Q.E.D.

Proposition 2. If $p \neq 2$ and $n \equiv 1 \pmod{p}$, then $Q(J_n(\mathfrak{p}))$ contains the fixed field of the group $G(\mathfrak{p})$ defined by (3).

Proof. Let $\sigma = \sigma_t$ be an element of $G(k_m/Q)$ such that $\int_n (p)^{\sigma} = \int_n(\mathfrak{p})$. Then we have $(g(\mathfrak{p})^{n-\sigma_n})^{\sigma_t} = g(\mathfrak{p})^{n-\sigma_n}$, so $g_t(\mathfrak{p})^{n-\sigma_n} = g(\mathfrak{p})^{n-\sigma_n}$, or (16) $\alpha_t^n = \alpha_t^{\sigma_n}$ with $\alpha_t = g_t(p)/g(\mathfrak{p})$. Since $G(k_m/Q)$ is of order $\varphi(m)$, (16) implies that (17) $\alpha_t^{n\varphi(m)} - \alpha_t = \alpha_t(\alpha_t^{n\varphi(m)-1} - 1) = 0$. Since $\alpha_t \neq 0$, (17) implies that $\alpha_t \in \mu(k_{mp})$. Hence we have $\alpha_t = \pm \zeta_m^i \zeta_p^j$, $i, j \in \mathbb{Z}$. In view of (16), we have $(\pm 1)^n \zeta_m^{ni} \zeta_p^{nj} = \pm \zeta_m^{ni} \zeta_p^j$, or $\zeta_p^{2nj} = \zeta_p^{2j}$. Since $p \neq 2$ and $n \neq 1 \pmod{p}$, we have $j \equiv 0 \pmod{p}$, so $\alpha_t = \pm \zeta_m^i \in \mu(k_m)$; in other words, we have $g(\mathfrak{p})^{1-\sigma_t} \in \mu(k_m)$, i.e., $\sigma_t \in G(\mathfrak{p})$. Q.E.D.

No. 2]

¹⁾ As for basic facts on Gauss sums and Jacobi sums, see, e.g., a beautifully written textbook [1].

The following Theorem follows from (10) and Propositions; it justifies the observation more than enough.

Theorem. Let k_m , m > 1, be the *m*th cyclotomic field, p an odd prime, $p \not\prec m$, n a positive integer such that (n, m) = 1 and $n \not\equiv 1 \pmod{p}$. Let \mathfrak{p} be a prime ideal in k_m such that $\mathfrak{p} \mid p$. Let $J_n(\mathfrak{p})$ be the Jacobi sum defined by (12) (or by (13) with $a_i = 1$, $1 \leq i \leq n$). Then $k_m = Q(J_n(\mathfrak{p}))$ if and only if p splits completely in k_m , i.e., $p \equiv 1 \pmod{m}$.

Remark. Notation being as in Theorem, consider the group (18) $G(J_n(\mathfrak{p})) = \{ \sigma \in G(k_m/Q) ; J_n(\mathfrak{p})^{\sigma} = J_n(\mathfrak{p}) \}.$ Proposition 1 means that (19) $G(J_n(\mathfrak{p})) \supseteq Z(\mathfrak{p}),$

where $Z(\mathfrak{p})$ is the decomposition group of \mathfrak{p} . On the other hand, Theorem means that

(20) $G(J_n(\mathfrak{p})) = \{1\} \Leftrightarrow Z(\mathfrak{p}) = \{1\}.$

Therefore we do not have yet a complete knowledge about the field $Q(J_n(\mathfrak{p}))$ when $Z(\mathfrak{p}) \neq \{1\}$, i.e., when f > 1. Here is an illustrative example. Let m = 5. Hence $\varphi(m) = 4$ and only possible f > 1 are f = 2 and f = 4. If f = 4, then $Z(p) = G(J_n(p)) = G(k_5/Q)$, no problem. If f = 2, the decomposition field of \mathfrak{p} is k_5^+ , the maximal real subfield of k_5 . Since $J_n(p)$ is contained in the decomposition field of \mathfrak{p} by (19), we have $J_n(\mathfrak{p}) \in \mathbb{R}$. Now, since $J_n(\mathfrak{p})^2 = |J_n(\mathfrak{p})|^2 = (N\mathfrak{p})^{n-1} = p^{2(n-1)}$, we have $J_n(\mathfrak{p}) = \pm p^{n-1} \in Q$; hence $G(J_n(\mathfrak{p})) = G(k_5/Q) \neq Z(\mathfrak{p})$. Let n = 6 (with m = 5, still). Then $J_6(\mathfrak{p}) = g(\mathfrak{p})^{6-\sigma_6} = g(\mathfrak{p})^{6-\sigma_1} = g(\mathfrak{p})^5$. Hence $g(\mathfrak{p})^5 \in Q$, but the decomposition field of \mathfrak{p} is $k_5^+ \neq Q$.²

Reference

 Ireland, K., and Rosen, M.: A Classical Introduction to Modern Number Theory. 2nd ed., Springer-Verlag (1990).