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Contiguity Relations of Generalized Confluent
Hypergeometric Functions

By Yoshishige HARAOKA*) and Hironobu KIMURA* *)

(Communicated by Kiyosi ITS, M. J. A., May 12, 1993)

In [3] we have introduced the generalized confluent hypergeometric func-
tion (CHG function, for short). It is a generalization of many special functions

in fact, by various specialization, it is reduced to the Gauss hypergeometric
function, Appell-Lauricella hypergeometric functions FD, Aomoto-Gelfand
hypergeometric functions F(k, n); the Kummer confluent hypergeometric
function, the Bessel function, the Hermite function and the Airy function.
Moreover by other specializations we can define new special functions in
several variables of confluent type e. g. the Kummer, Bessel, Hermite and
Airy functions in several variables.

CHG function is a function of several complex variables with several
complex parameters. Differential operators which send a CHG function to
another CHG function are called contiguity operators if the parameters of the
CHG functions differ by integers, and such linear differential relations be-
tween two CHG functions are called contiguity relations. Let us give two ex-
amples. For the Gauss hypergeometric function

F(a, fl, r;x) (a, n)(fl, n)
.=o (r, n) (1, n) ’x

it is known that
d

(0.1) aF(a+ 1, fl, r;x) =aF(a, fl, 7";x) +x-F(a, fl, 7";x)

([2]). Then the differential operator
d

(0.2) x + a

sends F(c, , ?’;x)to another hypergeometric function with parameters
(c + 1, , %). For the Bessel function

(-- I)"() "-"o 2+’n!F( + n + 1)
it is known that

d p
(o.3) dx L (x) L(x) L+ (x)

([9]). In this case the differential operator
d v(0.4) dx x

sends a Bessel function with a parameter p to one with a parameter p + 1.
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Thus the relations (0.1) and (0.3) are contiguity relations of the Gauss
hypergeometric function and the Bessel function, respectively. These rela-
tions are substantial for the study of special functions. In fact the study of
the Lie algebras of contiguity operators yields many formulas for special
functions ([5], [6]), and moreover, in a sense, the contiguity relations govern
special functions ([5], [2]).

For Aomoto-Gelfand hypergeometric functions (which are CHG function
of nonconfluent type) the contiguity relations have been obtained by T. Sasaki
[8]. In this paper we shall obtain contiguity relations of general CHG func-
tion. The set of contiguity operators makes a Lie algebra. By specializations
these contiguity relations yield contiguity relationsof the Kummer functions,
Bessel fuetions etc. of several variables.

1. Generalized confluent hypergeometric functions. Let r and n be
positive integers with r <: n, and let Zr,n be the set of r n matrices with
complex entries of maximal rank. GL(r, C) and GL(n, C) act on Zr,. by the
left and right matrix multiplication, respectively"

GL(r, C) x Zr,n GL(n, C) -- Zr,
(g, Z, C) gZC.

Let H be a maximal commutative subgroup of GL(n, C), and take a charac-
ter Z of the universal covering group H of H. We consider a function
F(z) on Zr,. which has the following covariance properties with respect to
the above actions"
(1.1) F(gz) (det g)-lF(z), for g GL(r, C), z Zr,,
(1.2) F(zc) F(z)x(c), for z Zr,n, c H.
We denote by zi the (i,j)-entry of z Zr,n for i--1,... ,r and for
j= 1,...,n.

Definition 1. Let F(z)be a multi-valued function on Zr,n satisfying
(1.1) and (1.2). When F(z) satisfies the differential equations

2 2

for i, j- 1,... ,r and for p, q- 1,... ,n, we call F(z) a generalized con-
fluent hypergeometric function (CHG function, for Short) of type (r, n H).

We describe H and Z explicitly.
Definition 2. For a positive integer m, we define the Jordan group

J(rn) of size m by

J(m)- c= N ciAi",G C, co=/=O
i=O

where
0 1

A- "’. 1
M(m, C).

0

J(m) is a maximal commutative subgroup of GL(m, C).
Let b- 1 + biT4- b2T2+ C[[T]] be a formal power series in
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the indeterminate 7". The polynomials Oi(bl,...,bi)(i- 1, 2,,...) are defined

by

log b Y: Oi(bl,... ,bi) T i.
i=1

Proposition 1. For any character of J(m), there are ao, ,am-1 C
such that

m-1
a

X civ Co exp aOi(c/Co,...,ci/Co)

We denote the above X by Xm,a with
Proposition 2. For any maximal commutative subgroup H of GL(n, C),

there is a partition/2 (21, /z,... ,/2) of n(i.e.

l’ 1 -- 2 --’’"-3(- l n) s?/I,ch that H is conjugate to the direct

product

Ha =J(21) xJ(2z) x xJ(/2,).
We remark that any character of H is a product of each character of

]C,), i= 1,...,I.
Noting that J(1) C , we can rewrite the above Ha as

(1.4) (C)" X J(/21) X’’" X J(/2k)
where /20, Pl,... ,/2k Z, go -> 0, 1 </21 _< _</2k, and /20 +/21 +
+/2k.-- n. We denote (1.4) also by H12 with/2 (/20, /21,... ,/2g).

We fix an H12, and consider a.CHG function of type (r, n;H12). As we

have remarked above, any character X is given by
/20 k

where
(o)

% C, j- 1,...,po,
(P) (P)

I
(p)

t(’0 ,t120_ 1) C12p, p- 1, k,
(0) (0) (1) (k) Cn

O----- t,O ,...,O12o, O ,...,O

For the compatibility of (1.1) and (1.2), we assume
12o k

1=1 p=l

We set

/20 +/21 + +/2 =: vi
for i 0,1,...,k;in particular we have

L)0 /20, Vk /20 + /21 ’- + /2k n.
Now we interpret the covariance properties (1.1) and (1.2) into infinitesimal
expressions. The GL(r, C) covariance (1.1) is interpreted as

(1.6) zip F(z) (i/F(z), i,j- 1, r.

The H12 covariance (1.2) is interpreted as

zF(z) aV(z), j 1,...,Uo,
q=l

(I)0 F(z) =% x)F(z) Vo+ 1 <j< v(1.7) Zq,t_j+(Vo+l) OZqt _(Vo+
q=l t=j
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(2.3)

Set

z,_+,+ az--- F(z) a_+
q=l t=j

Theorem 1. The system of differential equations (1.6), (1.7) and (1.3) is
completely ntegrable.

We call the system (1.6), (1.7), (1.3) the generalized confluent hypergeomet-
ric system (CHG system, for short) of type (r, n ;H) with parameters , and
denote it by E(r,
Oz; i 1,...,r ;j 1,...,n] generated by the differential operators

M z + 6, i,j= 1 r
P=I

i 1,...,k, p_, + 1 j u,

:= OzOz;q zOz i j 1 r p q 1 n,

of E(r, n ;H, a) is denoted by (r, n ;H a), or simply (a). The solu-
tion space of E(r, n H a) is denoted by S(r, n ;H a), or simply S().

2. Contiguity relations of CHG function. We fix a H given by (1.4),
and consider a CHG system of type (r, n ;H).

Definition 3. A linear differential operator P is called a contiguity oper-
ator, if there is a E Z" such that
(2.1) PS(a)
holds.

Proposition 3. F a liar differential operator P, (2.1) holds if and only if
(2.2) LP
holds for every L (a + ).

We denote by e the element in Zn
with the only non-zero entry 1 in the

i-th position, for i 1,...,n. We define a mapping
: {1,2,...,n}Z

by
Q’) :j if lj o,
) v_ + 1 if pz_ + 1 j p (p 1,...,k).

Our main result is the following.
Theorem 2. Let a, b {1,2,...,n} satisfy

a E {1,...,Vo, vo + 1, v + 1,...,v_ + 1},
b E {1, ,Vo, v, p,...,p}.

Then we have

for any L Z(cr + e(a Thus Pab is a contiguity of CHG function of
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type (r, n tta).
We set

N := {1,...,Vo, Vo + 1, L) -- 1,...,L)k_ -+- 1},
N := (1,...,o, 1, ,...,}.

Let ( be a C-linear space spanned by Pan with a,b satisfying (2.3):
(Po;a N1, b Nz).

Lemma 1.
[P,, Pa] ncPaa-

fora, c N, b, d N.
Thus we obtain
Theorem 3. c makes a Lie algebra over C.

We define a subspace o of by

fo (Pan;a, b {1,2,...,/Zo}).
It is shown by Sasaki [8] that co is isomorphic to the Lie algebra gl, of
general linear matrics. By the definition it is easy to see that Pan belongs to
the center of fff if zr(a) > Po and to(b) > Po. Summing up the above, we have

Proposition 4. (i) When Po n, is isomorphic to gl.
(ii) When Po O, is abelian.

3. Example. Contiguity relations of the Bessel funetion. The Bessel
function is obtained from the CHG function of type (2,4 ;J(2) x J(2)) by
the following specialization. For

Z (
\ 221 222

we set

and we assume g GL(2, C). Set

g_,(z2 Z14 )
222 224

and assume uz :/: 0. Then, setting
/1

C

213 Z14 )
\

(_ Z2,4,
223 Z24

Zll Z13 )Z21 Z23

22 A24

1

we haveh GL(2, C) and cJ(2) x J(2).Wehave

(31) h-1 -1 (1 0 0 x)gzc=
0 1 1 0

where
X U14$22

We denote the right hand side of (3.1) also by x. Let F(c z) be a CHG
function of type (2,4 ;J(2) J(2)) with parameter c. Then by the covar-
lance (1.1) and (1.2) we have
(3.2) F(a ;x) det h.det g.F(o: z)’z(c).
We denote F(c ;x) by f(a ;x) as a function of x. Then from the differential
equations (1.3) we derive a differential equation for f(c ;x):
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(3.3) xf"(a;x) cqf’(c x) c2cqf(a x) 0.
By the change of the independent variable

x= 4
and the gauge transformation
(3.4) f(a x)
we obtain the differential equation for o(c )"

(3.5) "(; ) + ’(; ) + a- (; ) o.
If we fix a and 4 so that e4 1, (3.5) is just the Bessel differential
equation with parameter + 1.

Tracing the above process of specialization, we obtain from the contigui-
ty operators

P32 z13 z12
-]- Z23 Z22,

P4-- z 0z4 -5 z21

of F(;z)the contiguity relations of the Bessel function. Namely, noting

(3.2)and (3.4), we obtain

(_+ a.+ 1

where C denotes an appropriate constant.

) o(a; ) Co(a + ea ;),

) (a; ) Co(a- e ;),
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