39. On the Measure on the Set of Positive Integers

By Kōsaku OKUTSU

Department of Mathematics, Gakushuin University (Communicated by Shokichi IYANAGA, M. J. A., June 8, 1993)

R. C. Buck [1] constructed as follows a measure μ on the set $N = \{0,1,2,\ldots\}$ of positive integers. For an arithmetic progression $A = \{an + b \mid n \in N\} = aN + b$, $a, b \in N$, $a \neq 0$, put $\mu(A) = a^{-1}$. Let A be the class of all arithmetic progressions and B the class of subsets of N which are finite disjoint unions of elements of A; thus if $B \in B$, then $B = \sum_{i=1}^{k} A_i$ (disjoint union) $A_i \in A$, $i = 1, 2, \ldots, k$. For such B, put $\mu(B) = \sum_{i=1}^{k} \mu(A_i)$. For any subset C of N, $\mu(C)$ is defined to be inf $\mu(B)$, $B \in B$ and $C \subset B \cup F$, where F is a finite subset of N.

On the other hand, we have another measure ν on N, used by J.-L. Mauclaire [2] to obtain various results. Let P denote the set of all prime numbers. For $p \in P$, the additive group \mathbb{Z}_p of p-adic integers with p-adic topology is a compact abelian group, which has therefore the Haar measure ν_p with $\nu_p(\mathbb{Z}_p) = 1$. The product group $G = \prod_{p \in P} \mathbb{Z}_p$ with the product topology is again a compact abelian group with product measure $\nu = \prod_{p \in P} \nu_p$. \mathbb{Z} is considered as a dense subgroup in G, and N as an open and closed subset of \mathbb{Z} which is also dense in G.

J.-L. Mauclaire [3] discussed the relationship between μ and ν using Riemann-Stieltjes integration. In this note, we shall show that this relationship can be directly clarified using only topological considerations.

Remark. The above introduced notations A, B, μ , ν , ν_p will be used throughout this note in the same meanings. Let us recall that $U_p(x, e) = x$ $+ p^e \mathbb{Z}_p$, $x \in \mathbb{Z}_p$, $e \in \mathbb{N}$, constitute an open basis of \mathbb{Z}_p and $V_S(U_p(x_p, e_p)) = \prod_{p \in S} U_p(x_p, e_p) \times \prod_{q \in P-S} \mathbb{Z}_q$ where S runs over the finite subset of P, $x_p \in \mathbb{Z}_p$, $e_p \in \mathbb{N}$, an open basis of G. For a subset M of G, \overline{M} will denote the closure of M in G. Recall, furthermore, that $\nu_p(U_p(x, e)) = \nu_p(x + p^e \mathbb{Z}_p)$ dose not depend on x and is equal to p^{-e} , so that $\nu(V_S(U_p(x_p, e_p))) = \prod_{p \in S} p^{-e_p}$.

Our main result will follow from the following two propositions.

Proposition 1. For any open and closed non-empty subset O in G, $O \cap N$ belongs to B.

Proof. O is a union of sets of form $V_S(U_p(x_p, e_p))$, because O is open. As G is compact, O is also compact. So O is a finite union of $V_S(U_p(x_p, e_p))$. Now $V_S(U_p(x_p, e_p)) \cap N = aN + b \in A$ where $a = \prod_{p \in P} p^{e_p}$ and $b \equiv x_p \mod p^{e_p}$, so that $O \cap N$ is an element of **B**.

Proposition 2. For $B \in B$, B is an open and closed subset of G, and $\mu(B) = \nu(\overline{B})$.

Proof. For $A = aN + b \in A$, we set $a = \prod_{b \in P} p^{e_b}$ where S is a finite

K. Okutsu

[Vol. 69(A),

subset of P. Then we have $\overline{A} = a \overline{N} + b = aG + b = \prod_{p \in S} U_p(b, e_p) \times \prod_{q \in P-S} \mathbb{Z}_q = V_S(U_p(b, e_p))$. And we have $\nu(\overline{A}) = a^{-1}$. So $\mu(A) = \nu(\overline{A})$. Now set $\underline{B} = \sum_{i=1}^k A_i$ (disjoint union) $A_i \in A$, i = 1, 2, ..., k. Then $\overline{B} = \bigcup_{i=1}^k \overline{A}_i$. As $\overline{A}_i \cap N = A_i$, we have $\overline{A}_i \cap \overline{A}_j \cap N = \emptyset$ when $i \neq j$. As $\overline{A}_i \cap A_j$ is open and closed, we have $\overline{A}_i \cap \overline{A}_j = \emptyset$ when $i \neq j$. Thus $\nu(\overline{B}) = \sum_{i=1}^k \nu(\overline{A}_i) = \sum_{i=1}^k \mu(A_i) = \mu(B)$.

Theorem. For any subset C of N, we have $\mu(C) = \nu(\overline{C})$.

Proof. Because $\nu(C) = \inf \nu(U)$ where U is open subset of G such that $\overline{C} \subset U \cup F$ for some finite set F, and \overline{C} is compact, we have $\nu(\overline{C}) = \inf \nu(O)$ where O is open and closed subset of G such that $\overline{C} \subset O \cup F$ for some finite set F. As $\nu(O) = \mu(O \cap N)$, and as $(O \cap N) \in B$, we have $\nu(\overline{C}) = \inf \nu(\overline{B}), B \in B$ and $C \subset B \cup E$ for some finite subset E of N. Thus we have $\nu(\overline{C}) = \mu(C)$.

References

- [1] R. C. Buck: The measure theoretic approach to density. Amer. J. Math., 68, 560-580 (1946).
- [2] J.-L. Mauclaire: Intégration et théorie des nombres. Hermann (1986).
- [3] —: Suites limite-périodiques et théorie des nombres. VI. Proc. Japan Acad., 57A, 223-225 (1981).