36. A Note on the Rational Approximations to $\tanh \frac{1}{k}$

By Takeshi Okano
Department of Mathematics, Saitama Institute of Technology (Communicated by Shokichi IYanAGA, M. J. A., June 8, 1993)

§ 1. Introduction. I. Shiokawa [4] proved the following theorem.
Theorem A. Let k be a positive integer. Then there is a positive constant C depending only on k such that

$$
\left|\tanh \frac{1}{k}-\frac{p}{q}\right|>C \frac{\log \log q}{q^{2} \log q}
$$

for all integers p and q with $q \geq 3$.
The purpose of this note is to prove the following theorem which shows that constant C in Theorem A is an effectively computable number depending only on $k \geq 2$.

Theorem. Let k and N be positive integers with $k \geq 2$ and $N \geq 10$, and let p_{n} / q_{n} be the n-th convergent of $\tanh \frac{1}{k}$. Let γ_{N} and δ_{n} be defined by

$$
\gamma_{N}=2\left(k+\frac{k+1}{N-1 / 2}\right)\left(1+\frac{\log \log (2 k(N+1) / e)}{\log (N+1)}\right)
$$

and

$$
\delta_{n}=\frac{(k(2 n+1)+2) \log \log q_{n}}{\log q_{n}}
$$

respectively. Let γ be any constant such that

$$
\gamma \geq \max \left\{\gamma_{N}, \gamma_{N}^{*}\right\}
$$

where

$$
\gamma_{N}^{*}=\max \left\{\delta_{n} \mid 1 \leq n<N\right\}
$$

Then

$$
\left|\tanh \frac{1}{k}-\frac{p}{q}\right|>\frac{\log \log q}{r q^{2} \log q}
$$

for all integers p and q with $q \geq 2$.
We now record two corollaries of the theorem.
Corollary 1. For all integers p and q with $q \geq 2$,

$$
\left|\tanh \frac{1}{2}-\frac{p}{q}\right|>\frac{\log \log q}{6 q^{2} \log q} .
$$

Corollary 2. For all integers p and q with $q \geq 2$,

$$
\left|\tanh \frac{1}{3}-\frac{p}{q}\right|>\frac{\log \log q}{9 q^{2} \log q}
$$

§ 2. Lemma. Lemma. Under the same assumptions as in Theorem,

$$
\left|\tanh \frac{1}{k}-\frac{p}{q}\right|>\frac{\log \log q}{\gamma_{N} q^{2} \log q}
$$

for all integers p and q with $q \geq q_{N}$.
Proof. If p / q is not a convergent of $\tanh \frac{1}{k}$, then

$$
\left|\tanh \frac{1}{k}-\frac{p}{q}\right|>\frac{1}{2 q^{2}}
$$

Therefore, the lemma is proved in this case. We must consider the case that p / q is a convergent of $\tanh \frac{1}{k}$. The continued fraction of $\tanh \frac{1}{k}$ is

$$
\tanh \frac{1}{k}=\left[a_{0}, a_{1}, a_{2}, a_{3}, \cdots\right]=[0, k, 3 k, 5 k, \cdots]
$$

In other words, $a_{0}=0$ and $a_{n}=k(2 n-1)$ for $n \geq 1$. Since $q_{n+1}=a_{n+1} q_{n}$ $+q_{n-1}=k(2 n+1) q_{n}+q_{n-1}<(k(2 n+1)+1) q_{n}$, we have

$$
\left|\tanh \frac{1}{k}-\frac{p_{n}}{q_{n}}\right|>\frac{1}{q_{n}\left(q_{n+1}+q_{n}\right)}>\frac{1}{(k(2 n+1)+2) q_{n}^{2}}
$$

Now we must estimate q_{n}. Suppose that $n \geq N$. Since $q_{n} \geq k(2 n-1) q_{n-1}$ $\geq \cdots \geq k^{n} \Pi_{\nu=1}^{n}(2 \nu-1)$, we have

$$
\begin{aligned}
\log q_{n} & \geq n \log k+\sum_{\nu=1}^{n} \log (2 \nu-1) \\
& \geq n \log k+\int_{1}^{n} \log (2 x-1) d x \\
& =n \log k+(n-1 / 2) \log (2 n-1)-n+1 \\
& \geq(n-1 / 2) \log \left((2 n-1) / e^{1 / 3}\right)
\end{aligned}
$$

Conversely, $q_{n} \leq 2 k n q_{n-1}$. Hence,

$$
q_{n} \leq(2 k)^{n} n!
$$

Therefore,

$$
\begin{aligned}
\log q_{n} & \leq n \log (2 k)+\sum_{\nu=1}^{n} \log \nu \\
& \leq n \log (2 k)+\int_{1}^{n+1} \log x d x \\
& =n \log (2 k)+(n+1) \log (n+1)-n \\
& \leq(n+1) \log (2 k(n+1) / e), \\
\log \log q_{n} & \leq \log (n+1)+\log \log (2 k(n+1) / e)
\end{aligned}
$$

As we can see that

$$
l(x)=\frac{\log \log (2 k(x+1) / e)}{\log (x+1)}(x \geq 10)
$$

is a strictly decreasing function, we have
$\log \log q_{n} \leq(1+l(N)) \log (n+1) \leq(1+l(N)) \log \left((2 n-1) / e^{1 / 3}\right)$.
From these consequences, we find

$$
\begin{aligned}
& \frac{\log \log q_{n}}{\log q_{n}} \leq \frac{1+l(N)}{n-1 / 2} \\
& \quad \leq 2\left(k+\frac{k+1}{N-1 / 2}\right)\left(1+\frac{\log \log (2 k(N+1) / e)}{\log (N+1)}\right) \cdot \frac{1}{k(2 n+1)+2} \\
& \quad=\frac{r_{N}}{k(2 n+1)+2}
\end{aligned}
$$

Therefore,

$$
\left|\tanh \frac{1}{k}-\frac{p_{n}}{q_{n}}\right|>\frac{\log \log q_{n}}{\gamma_{N} q_{n}^{2} \log q_{n}}
$$

This completes the proof.
§ 3. Proof of the theorem. It suffices only to consider that p / q is an n-th convergent of $\tanh \frac{1}{k}$. From the definition of γ_{N}^{*}, we have following inequalities

$$
\left|\tanh \frac{1}{k}-\frac{p_{n}}{q_{n}}\right|>\frac{1}{(k(2 n+1)+2) q_{n}^{2}}=\frac{\log \log q_{n}}{\delta_{n} q_{n}^{2} \log q_{n}} \geq \frac{\log \log q_{n}}{r_{N}^{*} q_{n}^{2} \log q_{n}}(1 \leq n<N)
$$

And from Lemma, we have

$$
\left|\tanh \frac{1}{k}-\frac{p_{n}}{q_{n}}\right|>\frac{\log \log q_{n}}{\gamma_{N} q_{n}^{2} \log q_{n}}(n \geq N)
$$

This completes the proof of the theorem.
§ 4. Proof of corollaries. Proof of Corollary 1. For $N=22$, we have $\gamma_{22}=5.9972 \cdots$ and $\gamma_{22}^{*}=\delta_{5}=5.3972 \cdots$. Hence we can choose γ so that $r=6$. Then Corollary 1 follows at once from the theorem.

Proof of Corollary 2. For $N=27$, we have $\gamma_{27}=8.9813 \cdots$ and $\gamma_{27}^{*}=$ $\delta_{8}=7.1487 \cdots$. Hence we can choose γ so that $\gamma=9$. Then Corollary 2 fol lows at once from the theorem.

References

[1] T. Okano: A note on the rational approximations to e. Tokyo J. Math., 15, 129-133 (1992).
[2] -: A note on the rational approximations to $e^{1 / k}$ (submitted).
[3] O. Perron: Die Lehre von den Kettenbrüchen. Band I. B. G. Teubner, Stuttgart (1954).
[4] I. Shiokawa: Rational approximations to the values of certain hypergeometric functions. Number Theory and Combinatorics, Japan 1984. World Scientific Pub. Co., Singapore, pp. 353-367 (1985).

