61. A Note on Jacobi Sums. III

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U.S.A. (Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1993)

This is a continuation of [1] which will be referred to as (II). In this paper, we shall reprove Theorem 2 of (II)¹⁾ in a setting which suggests us a direction in further studies inspired by Stickelberger's theorem. We follow, in general, notation and conventions of (II). This paper is logically independent of (II).

- §1. Quotient space $H(\mathfrak{P}^{\omega})$. Let K/k be a finite Galois extension of number fields K, k of finite degree over Q with the Galois group G = G(K/k). Let Π be the set of prime ideals \mathfrak{P} of K unramified for K/k. We shall call a map $\varphi: \Pi \to K^{\times}$ a function of type (S) if it satisfies the following conditions:
- (S.1) $\varphi(\mathfrak{P}^s) = \varphi(\mathfrak{P})^s$ for all $s \in G$,
- (S.2) there is an $\omega_{\varphi} \in \mathbf{Z}[G]$ such that $(\varphi(\mathfrak{P})) = \mathfrak{P}^{\omega_{\varphi}}$ for all $\mathfrak{P} \in \Pi$.

Using a prime $\mathfrak p$ of k which splits completely in K, one sees that ω_{φ} is well-defined by φ and that ω_{φ} belongs to the center $\mathbf Z[G]_0$ of $\mathbf Z[G]$. If we denote by Φ the set of all maps φ of type (S), then Φ becomes a multiplicative group in an obvious way and the map $\varphi \to \omega_{\varphi}$ becomes a homomorphism of Φ into the additive group of $\mathbf Z[G]_0$ whose kernel consists of all maps $\varphi:\Pi \to \mathfrak o_K^{\times}$, the group of units of $\mathfrak o_K$.

As in (II), for $\varphi \in \Phi$, $\omega \in \mathbf{Z}[G]$, we put

(1.1)
$$G(\varphi(\mathfrak{P})) = \{ s \in G ; \varphi(\mathfrak{P})^s = \varphi(\mathfrak{P}) \},$$

$$G^*(\varphi(\mathfrak{P})) = \{ s \in G ; (\varphi(\mathfrak{P}))^s = (\varphi(\mathfrak{P})) \},$$

$$G(\mathfrak{P}^\omega) = \{ s \in G ; (\mathfrak{P}^\omega)^s = \mathfrak{P}^\omega \}.$$

 $G(\mathfrak{P}^{\omega}) = \{s \in G ; (\mathfrak{P}^{\omega})^s = \mathfrak{P}^{\omega}\}.$ Note that we use the convention $\mathfrak{P}^{st} = (\mathfrak{P}^t)^s$, $s, t \in G$. Since $\omega_{\varphi} \in \mathbf{Z}[G]_0$ we have, by (S.2),

$$(1.2) G(\mathfrak{P}^{\omega_{\varphi}}) = G^*(\varphi(\mathfrak{P})) \supset G(\varphi(\mathfrak{P})) \supset G(\mathfrak{P})$$

where $G(\mathfrak{P})$ means the decomposition group of \mathfrak{P} , i.e., $G(\mathfrak{P}) = G(\mathfrak{P}^1)$, $1 \in \mathbb{Z}[G]$. For an $\omega \in \mathbb{Z}[G]_0$, we shall put

(1.3)
$$H(\mathfrak{P}^{\omega}) = G(\mathfrak{P}^{\omega}) / G(\mathfrak{P}).$$

Write an $\omega \in \mathbf{Z}[G]_0$ as

(1.4)
$$\omega = \sum_{t \in G} a(t)t.$$

Since a = a(t) is a class function on G, its Fourier expansion makes sense:

$$a = \sum_{\chi \in Irr(G)} a_{\chi} \chi$$

where Irr(G) denotes the set of C-irreducible characters of G. The Fourier coefficients are

As for the statement, see the last line of this paper before Acknowledgement.

(1.6)
$$a_{\chi} = \frac{1}{|G|} \sum_{t \in G} a(t) \bar{\chi}(t), \quad \chi \in Irr(G).$$

In order to describe the quotient space (1.3) in terms of characters, write

(1.7)
$$\omega = \sum_{t \in G} a(t)t = \sum_{t \in G/G(\mathfrak{P})} \sum_{u \in G(\mathfrak{P})} a(tu)tu.$$

Then we have

(1.8)
$$\mathfrak{P}^{\omega} = \prod_{t \in G/G(\mathfrak{P})} (\mathfrak{P}^t)^{R(t)} \quad \text{with } R(t) = \sum_{u \in G(\mathfrak{P})} a(tu).$$

Since $s\omega = \sum_{t \in G} a(s^{-1}t) t$, we have, by (1.8),

(1.9)
$$\mathfrak{P}^{s\omega} = \prod_{t} (\mathfrak{P}^{t})^{R(s^{-1}t)}.$$

By the uniqueness of the prime decomposition of ideals, we obtain, from (1.1), (1.8), (1.9),

$$(1.10) s \in G(\mathfrak{P}^{\omega}) \Leftrightarrow R(s^{-1}t) = R(t) \text{for all } t \in G.$$

Since $R(t) = \sum_{u \in G(\mathfrak{P})} a(tu) = \sum_{u} \sum_{\chi} a_{\chi} \chi(tu)$, we have, by (1.10),

$$(1.11) s \in H(\mathfrak{P}^{\omega}) \Leftrightarrow \sum_{\chi} a_{\chi} \sum_{u \in G(\mathfrak{P})} (\chi(s^{-1}tu) - \chi(tu)) = 0, t \in G,$$

where, by abuse of notation, we identified $s \in G(\mathfrak{P}^{\omega})$ with $s \mod G(\mathfrak{P})$ in $H(\mathfrak{P}^{\omega})$. Hoping (1.11) as a starting step for a nonabelian theory, in the sequel, we shall restrict ourselves to the case of abelian extensions K/k.

§2. Abelian extensions. Notation being as in §1, assume that K/k is abelian. Then (1.11) may be written:

(2.1)
$$\sum_{\chi \in \widehat{G}} a_{\chi}(\chi(s^{-1}) - 1)\chi(t) \sum_{u \in G(\mathfrak{P})} \chi(u) = 0 \text{ for all } t \in G.$$

By the orthogonality of characters on groups $G(\mathfrak{P})$ and $G/G(\mathfrak{P})$, one sees that (2.1) is equivalent to

(2.2)
$$a_{\chi}(\chi(s) - 1) = 0 \text{ for all } \chi \in \widehat{G/G(\mathfrak{P})},$$

or to

(2.3)
$$\chi(s) = 1$$
 for all $\chi \in \widehat{G/G(\mathfrak{P})}$ such that $a_{\chi} \neq 0$.

In view of (1.6), we get

(2.4)
$$H(\mathfrak{P}^{\omega}) = \{ s \in G/G(\mathfrak{P}) ; \chi(s) = 1 \text{ for all } \chi \in \widehat{G/G(\mathfrak{P})} \text{ such that } \sum_{t \in G} a(t)\overline{\chi}(t) \neq 0 \}.$$

§3. Back to the *l*-th cyclotomic field. Let *l* be an odd prime and let $k = \mathbf{Q}(\zeta)$ be the *l*-th cyclotomic field, $\zeta = e^{2\pi i/l}$. For a prime $p \neq l$, let \mathfrak{p} be a prime ideal in k such that $\mathfrak{p} \mid p.^2$ We may identify $G = G(k/\mathbf{Q})$ with the cyclic group $\mathbf{F}_l^{\times} = \langle w \rangle$ as usual. Thus, for an $\omega = \sum_{t \in \mathbf{F}_l^{\times}} a(t) \sigma_t \in \mathbf{Z}[G]$, (2.4) can be written as

(3.1)
$$H(\mathfrak{p}^{\omega}) = \{ s \in \mathbf{F}_{l}^{\times} / (\mathbf{F}_{l}^{\times})^{g} ; \chi(s) = 1 \text{ for all } \chi \in \widehat{\mathbf{F}_{l}^{\times}} / (\widehat{\mathbf{F}_{l}^{\times}})^{g} \text{ such that } \sum_{t \in \mathbf{F}_{l}^{\times}} a(t)\overline{\chi}(t) \neq 0 \}.$$

Now choose for ω an element in Z[G] with

(3.2)
$$a(t) = res_t(t^*), \quad t^* = -t^{-1}$$

Note that $l-1=f\cdot g$, $N\mathfrak{p}=p^f$, $g=|G/G(\mathfrak{p})|$.

and for χ the character of $\boldsymbol{F}_{l}^{\times}/(\boldsymbol{F}_{l}^{\times})^{g}$ determined by $\chi(w)=e^{\frac{2\pi i}{g}}$. Then we have $\chi(-1)=\chi(w^{\frac{l-1}{2}})=\chi(w)^{\frac{l-1}{2}}=(e^{\frac{2\pi i}{g}})^{\frac{lg}{2}}=(-1)^{f};$ hence, χ is an odd character of $\boldsymbol{F}_{l}^{\times}$ if and only if f is odd. Furthermore, we have $\sum_{t\in\boldsymbol{F}_{l}^{\times}}a(t)\,\bar{\chi}(t)=\sum_{t}res_{l}(t^{*})\bar{\chi}(t)=\sum_{t}res_{l}(t)\bar{\chi}(t^{*})=(-1)^{f}\,\sum_{t}res_{l}(t)\chi(t)=(-1)^{f}\,\sum_{\nu=1}^{l-1}\nu\chi(\nu),$ which is $\neq 0$ if f is odd because $0\neq L(1,\bar{\chi})=\frac{\pi i}{l^{2}}$ $\tau(\bar{\chi})\,\sum_{\nu=1}^{l-1}\nu\chi(\nu)$ for any odd character of $\boldsymbol{F}_{l}^{\times}$. Let $s=w^{\xi}$ be any element in $H(\mathfrak{p}^{\omega})$. Since the above odd character χ

Let $s=w^{\xi}$ be any element in $H(\mathfrak{p}^{\omega})$. Since the above odd character χ satisfies the condition in (3.1), we must have $1=\chi(s)=\chi(w)^{\xi}=e^{\frac{2\pi i}{g}\xi}$; hence $g\mid \xi$, so $s \mod (F_i^{\times})^g=1$. In other words, $H(\mathfrak{p}^{\omega})=1$. Now let $J(\mathfrak{p})$ be the Jacobi sum considered in (II), i.e., the one such that $J(\mathfrak{p})=g(\mathfrak{p})^I$, $g(\mathfrak{p})$ being the Gauss sum. By the Stickelberger's theorem $J=J(\mathfrak{p})$ is a function of type (S) for the extension k/Q for which $\omega_J=\omega=\sum_i res_i(t^*)\sigma_i$. Since $H(\mathfrak{p}^{\omega})=1$, i.e., $G(\mathfrak{p})=G(\mathfrak{p}^{\omega})=G^*(J(\mathfrak{p}))$, we have, by (1.2),

 $Q(J(\mathfrak{p})) = Q(\mathfrak{p})$ if f is odd.³⁾ (Theorem 2 of (II)).

Acknowledgements. After this paper has been written, I learned from Mr. Kawamoto that a similar problem has been treated by A. Yokoyama [4] for Jacobi sums of two variables. I express my thanks to Mr. Kawamoto for his information. My thanks go also to Prof. A. Gyoja who took trouble to type my handwritten manuscript.

References

- [1] Gyoja, A., and Ono, T.: A note on Jacobi sums. II. Proc. Japan Acad., $\mathbf{69}$ A, 91-93 (1993).
- [2] Weil, A.: Jacobi sums as "Grössencharactere". Trans. Am. Math. Soc., 73~VI, 487-495~(1952).
- [3] Kimura, T.: Algebraic class number formulae for cyclotomic fields. Sophia Kokyuroku in Math., 22, Sophia Univ. Tokyo (1985).
- [4] Yokoyama, A.: On the Gaussian sum and the Jacobi sum with its applications. Tôhoku Math. J., (2) 16, 142-153 (1964).

³⁾ $Q(\mathfrak{p})$ denotes the decomposition field of $\mathfrak{p}:Q(\mathfrak{p})=k^{G(\mathfrak{p})}$.