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70. Explicit Formulas and Asymptotic Expansions for
Certain Mean Square of Hurwity Zeta-functions

By Masanori KATSURADA **™ and Kohji MATSUMOTO**'

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1993)

Let {(s, ) be the Hurwitz zeta-function with a positive parameter «,
and {,(s, @) = {(s, @) — a . Recently, three proofs of the conjecture
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where ¢t = 1 and 7 is Euler’s constant, have appeared. Zhang's proof [10] is
based on the functional equation of {(s, &), and actually, he proved the fol-

lowing stronger result: 1
1 ) G+ia)
@ [ da = log(t/2m) + 7 — 2Re ———+ 0™,
0

5 + it
where {(s) is the Riemann zeta-function. Another proof of (2) is given in
Andersson [1], who obtained certain explicit formulas (Corollaries 1 and 2
below) which implies (2). His proof is based on Mikolas’ idea [7] of using
Parseval’s identity. The third proof, sketched in the authors’ article [6], is a
variant of Atkinson’s method, and the key lemma is the explicit formula [6,
(3.1)]. The main idea of this proof is based on the works of Atkinson [2],
Motohashi [8] and the authors [4].

By refining the argument of the third proof, we can prove several ex-
plicit formulas and asymptotic expansions, which we announce in this note.
The proofs will appear elsewhere.

The first result is a further refinement of Andersson-Zhang’s formula
(2). Let I'(s) be the gamma-function, and ¢(s) = (I""/I) (s). Then,

Theorem 1. For any integer K = 0, we have the asymptotic expansion
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Remark 1. The empty sum is to be considered as zero.
1 . _

Remark 2. Since Re gb(—z- + zt) =logt+ O@t?, Theorem 1 implies

(2).
1

Theorem 1 can be obtained, by taking the limit o — 5 from the follow-

ing

1
Theorem 2. If0<0<2,0¢€& {5, 1} and t = 1, then

1
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0

-_ 1 _ _ rd—o+if Lo+ — 1

—2Re 5 (— D+t BT 2Dinlot D,
k=1

S -k —o—1+k—it
Dm0 T Dot 5 h 4 1)

I=1
+ 0¢™* ™
for any integer K = 0, wheve (s), = I'(s + n) /I'(s) for any integer n.

The asymptotic formula on the line ¢ = 1 can also be deduced from
Theorem 2, as the limit case 0— 1.

More generally, starting from [6, (3.1)], we can prove the following ex-
plicit formula. Let #, v be complex variables, and E the set of (#, v) at
which some factor in (3) below has a singularity.

Theorem 3. Let N =1 be an integer, — N+ 1 <Reu< N+1, — N
+1<Rev< N+ 1, and (u, v) € E. Then it holds

w>£gmwgmmm
1

_ ra—v , rd—uw
=wry=T T w0t o= (S + T ™)
— Sy(u, v) — Sy(w, u) — Ty(u, v) — Ty(v, uw),
where
— Nilﬁ + — )
SN(u’ v) - = (1 — v)n+1 (C(u n) ]- ’
(u) v

Tv(u, o) =g =5, 207 ,[ B“TEA + B VdB.

Morveover, Ty (1, v) has the expression
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for any integer K = 0.

Taking the limit N— o in Theorem 3, we have the following explicit
result, because Ty(#, v) — 0 as N— oo,
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Corollary 1. Let u, v be as in Theorem 3. Then

jod Ciu, (v, )da
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Taking the limit u—’~2- + it and v— CE it in Corollary 1, we have

another refinement of (2):
Corollary 2.

Ik
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We note that Andersson [1] has shown Corollaries 1 and 2 by a different
method. The special case £ = 0 in Corollary 2 is also given in Zhang [10,
Theorem 3.

Next, taking # = o + it and v = o — it in Theorem 3, we obtain the fol-
lowing generalization of Theorem 2.

Corollary 3. Let N, K be integers with N = 1 and K = 0. Then, for any
o satisfying —N+1<o<N+1,20—1€¢1{1,0,—1, —2,...} and
any t = 1, we have
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The exceptional cases (#, v) € E in Theorem 3 can be treated as the
limit cases. Theorem 1 is such an example. Another example is
Corollary 4. For any integer m = 0, we have

j: ¢ (—m, a)’da
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It is also possible to deduce the asymptotic formula at positive integers.

The closed form of Corollary 4 can also be proved from the well-known
formula {(— m, @) = — B,,,,(@)/(m + 1), where B,,,,(®) is the (m + 1)-th
Bernoulli polynomial. This is achieved by the method similar to that de-
scribed in Section 4 of [5].

It should be mentioned that the results of Mikolas [7, Satz 3] can be
treated in the frame of our method. The formula

(4) Clu, ) L(v, o)
=Cw+v,@+Tu+v— 1)c(u+u—1)<

+gu,v;0 + g, u;
holds for Re # < 1, Re v < 1, which is equivalent to [6, (3.1)]. Taking # = ¢

' —w I'a—ovo)
o T I'w >

. . 1 , .
+ i, v =0 — 1t with 0 < 5 in (4), and integrating both sides, we obtain

Mikolas’ result [7, (5.4)]. Moreover, it can also be proved as the limit case
g — ° of our discrete mean value result [6, Theorem 2].

0
Finally we consider the mean square of the derivative {[(s, &) = Bs
C,(s, @). Zhang [9] proved, among other things, that there exist constants A
and B, for which
1

1 , 1 . 2 _ s
(5) f; C1<§ + it, a> do. = 3 log’(t/27)
+ rlog’(t/2m) — 2B log(t/2m) + A + o()

holds, where p(#) = Ot "*(log £)*”®). Zhang defined A and B as certain
integrals, but it can be seen that A = 2y, and B = — 7,, where 7, and 7, are
generalized Euler’s constants defined by
CA+s)=s +r+rs+ s + .

On the other hand, as was first noticed in Katsurada [3], our method can be
applied to the mean square of derivatives (of any order) of zeta and
L-functions. Here we do not state the rather complicated form of the general
result, but as a special case, we write down the following expression of

o () in (5).
Theorem 4. We have
1 .
C’(E + zt) 5 L,
o = —2Re———5 —2Re5 5 T,(u, v) + Ot “log™2t).
(1 . oudv w=lyiro=l _is
5 + lt) 2

This in particular implies p(f) = O(™"), which improves Zhang's estimate
of o(#) mentioned above.
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