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Explicit Formulas and Asymptotic Expansions for
Certain Mean Square of Hurwitz Zeta-functions

By Masanori KATSURADA*)’*) and Kohji MATSUMOTO**

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1993)

Let (s, or) be the Hurwitz zeta-function with a positive parameter
and l(s, or) (s, or) o-s. Recently, three proofs of the conjecture

(1) + it, cr dcr- log(t/2) + r + O(t-),

where t 2 1 and 7 is Euler’s constant, have appeared. Zhang’s proof [10] is
based on the functional equation of (s, ), and actually, he proved the fol-
lowing stronger result:

1 ( )1 (+it)
),(2) + it, a da- log(t/2) + r- 2Re 1 + O(t-

+it
where (s) is the Riemann zeta-function. Another proof of (2) is given in
Andersson [1], who obtained certain explicit formulas (Corollaries 1 and 2
below) which implies (2). His proof is based on Mikolfis’ idea [7] of using
Parseval’s identity. The third proof, sketched in the authors’ article [6], is a

variant of Atkinson’s method, and the key lemma is the explicit formula [6,
(3.1)]. The main idea of this proof is based on the works of Atkinson [2],
Motohashi [8] and the authors [4].

By refining the argument of the third proof, we can prove several ex-
plicit formulas and asymptotic expansions, which we announce in this note.
The proofs will appear elsewhere.

The first result is a further refinement of Andersson-Zhang’s formula
(2). Let F(s) be the gamma-function, and (s) (F’/ (s). Then,

Theorem 1. For any integer K O, we have the asymptotic expansion

+ .,
/1

=r-log2+ReO+it)-2Re 1
g+it

(- 1)-(k- 1)

it)... + it) 5
+

+ O(t--).
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(2).

ing

Remark 1.

Remark 2.

The empty sum is to be considered as zero.

Since Re (- + it)= log t+ O(t-), Theorem 1 implies

1
Theorem 1 can be obtained, by taking the limit a--* -, from the follow-

Theorem2. If O < a < 2, a : {1/2, 1} and t >-- 1, then

fool (a + it, a)I da

1 F(1 a + it)
2a-1 +2F(2a-1)(2a- 1) Re F(a+it) 2Re

(a + it) I
1 a + ,it

(2-- 2a) (a + it) - -o-+-t--2Re (- I) *- - - (l+ 1)
k=l 1-- a + it =1

+ O(t--)
for any integer K >_ O, where (s) n I(s + n)/I(s) for any integer n.

The asymptotic formula on the line a 1 can also be deduced from
Theorem 2, as the limit case a -+ 1.

More generally, starting from [6, (3.1)], we can prove the following ex-
plicit formula. Let u, v be complex variables, and E the set of (u, v)at
which some factor in (3) below has a singularity.

Theorem 3. Let N >- 1 be an integer, N + 1 < Re u < N + 1, N
+ 1 < Re v < N + 1, and (u, v) E. Then it holds

(3) (u, a)(v, a)da

u+v- 1 +F(u+v- 1)(u+v- 1) F(1F(u)V) + F(1F(v)--
SN(U V) SN(U 1) Tu(u, v) Tu(v, u),

where

Su(u, v) 2 (1_ v)n=O n+l
((u + n) 1),

()N 1-u-v fooT(u, v) (1 v) E1 fl+-" (1 + j) -.-gdfl.
Moreover, TN(U, v) has the expression

,r (2 u v) k-1 (U)N_ i- (I + 1) -’-g+T(u, v) , (-- 1) g-1

k--X (1 V) N 1--1

+ (_ 1)/ (2 u- V),(U)N_I ll-U-v ft.+v-,r-a(1 + fl)-U-N+Idfl(1 V)N

for any integer K >- O.
Taking the limit N-- co in Theorem 3, we have the following explicit

result, because TN(U, v) --* 0 as N--* co.
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Corollary 1. Let u, v be as in Theorem 3. Then

o
u, a) v, a)da

1 (,F(I_ v)
u + v- 1 + F(u + v- 1)(u + v- 1) \ F(u) + F(1 u)

V(v) )
E (1 v) ({(u + n) 1) E (1 U)n+ ((v + n) 1).
n=0 n+l n=0

1 1
Taking the limit u--’ + it and v--’ 2 it in Corollary 1, we have

another refinement of (2):
Corollary 2.

f0’  1(21- / it, o)I
(+n+ 0 --1

2Re 1=o --+ n + it2
We note that Andersson [1] has shown Corollaries 1 and 2 by a different
method. The special case t 0 in Corollary 2 is also given in Zhang [10,
Theorem 3].

Next, taking u a + it and v a- it in Theorem 3, we obtain the fol-
lowing generalization of Theorem 2.

Corollary 3. Let N, K be integers with N >- 1 and K >_ O. Then, for any
1, --2,...} and

1 F(1 e + it)
2a- 1 + 2F(2- 1)(2- 1) Re F(a + it)

g- (a + it) n--2Re (1-- a+ it) (( +it+n) 1)
n=0 n+l

,r (2 2a) (a + it)
_

__+_
--2 Re (--1)- - N-k l (l + 1)

= (1 a + it) =
+ O(t--).

The exceptional cases (u, v) E in Theorem 3 can be treated as the
limit cases. Theorem 1 is such an example. Another example is

Corollary 4. For any integer m O, we have

(- m, )2d

1 m+l (m!)
2m + 1 + (- 1) (2m + 1) (- 2m 1)

(m) m (-- 1)(m)
2(-- 1) / (2m + 2)! 2

0 (m + n + ii( n) (g(n m) 1).

a satisfying N + 1 < a < N + 1, 2a 1 {1, O,
any t >_ 1, we have

foll (a + it, cO dc
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It is also possible to deduce the asymptotic formula at positive integers.

The closed form of Corollary 4 can also be proved from the well-known
formula (--m, c) --Bm+x(o)/(m 4- 1), where B,,+(c) is the (m q- 1)-th
Bernoulli polynomial. This is achieved by the method similar to that de-
scribed in Section 4 of [5].

It should be mentioned that the results of Mikols [7, Satz 3] can be
treated in the frame of our method. The formula
(4) (u, a)(v, a)

(u+v,a) +V(u+v- 1)(u+ v- 1)-(F(1- u) V(1-- v))-V(v) + F(u)
+ g(u, v; a) + g(v, u; a)

holds for Re u < 1, Re v < 1, which is equivalent to [6, (3.1)]. Taking u a
1+ it, v a- it, with a <- in (4), and integrating both sides, we obtain

Mikols’ result [7, (5.4)]. Moreover, it can also be proved as the limit case
q--+ oo of our discrete mean value result [6, Theorem 2].

Finally we consider the mean square of the derivative (s, c) Os
(s, c0. Zhang [9] proved, among other things, that there exist constants A
and B, for which

+ r log(t/2rr) 2B log(t/2rr) + A +
holds, where p(t) O(t-1/6(log t)l/a). Zhang defined A and B as certain
integrals, but it can be seen that A 27. and B 7"1, where 7"1 and 7". are

generalized Euler’s constants defined by
-1(1 +s) s + 7"+ 7"1s+ 7"as+ "".

On the other hand, as was first noticed in Katsurada [3], our method can be
applied to the mean square of derivatives (of any order) of zeta and
L-functions. Here we do not state the rather complicated form of the general
result, but as a special case, we write down the following expression of
p(t) in (5).

Theorem 4. We have

’( + it) ,
+ O(t- log2t)p(t)=-2Re (+it),.-2ReOuovT(u,v)luq+,,=1/2 -"

This in particular implies p(t) O(t-1), which improves Zhang’s estimate
of p(t) mentioned above.
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