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The work herein continues that of [5] to which we refer the reader for
background information and notation. This also complements the work of the
authors in [6] where we dealt with the real case.

Our principal result (Theorem 1 below) provides a sharp lower bound
for hd when A < 0 is the discriminant of any complex quadratic order, and
yields as a consequence a complete generalization of the well-known result
by Rabinowitsch [8] for hd0 1, and includes the more recent result by
Sasaki [9] for hd0--2. Furthermore, our results yield sharper bounds than
those given heretofore in the literature such as Oesterle [7] and Buhler,
Gross and Zagier [2]. Most recently Sasaki [9] gave the following lower
bound
(*) hdo >- d(N(b + w)
where b is any non-negative integer with b <_ Aol/4 1 and d(m) is the
number of (not necessarily distinct) prime divisors of m.

It is in the context of () that we couch our main result which will be
seen to be a much sharper bound as follows. In the following D- fDO

where DO is the radicand of Q(/) Q(/Do).
Theorem 1. Let A < 0 be a discriminant with odd conductor f If b is any

integer and M is any divisor of N(b + oo) with M < N(w) and gcd(M, f)
I then hd 2 r(M), the number of distinct positive divisors of M.
Proof It suffices to show that if a =/= a are both divisors of M then

I-- [a, b+ cod is not equivalent to I [a, b+ cod]. Suppose, to the
contrary that I I..

Claim. There exist relatively prime integers x and y satisfying
2

(1) ((aax) + (ab + a- 1)y) Dy a aa.
(2) a I(ax / (2b + a- 1)y).
(3) a aa. [(D- (ab + a- 1))y.

We only prove the case where a--1 since the other case is similar.
Since I I. then there exists an element )" I such that (r)Ie (a)I

*) Department of Mathematics and Statistics, The University of Calgary, Canada.
The first author’s research is supported by NSERC Canada grant $ A8484.

* *) Mathematics Department, Southwest Missouri State University, U. S. A.
The second author’s research is supported by an SMSU Faculty Summer Fellowship.



No. 9] Orders in Quadratic Fields. II 369

(e.g. see [4, section 3, p. 128] and also [1, Lemma 2.6, p. 110]). If 7 alx
(b + w,)y where x and y are rational integers then

[(ala2x + a.by) + ayoo,, (albx-+- (b + D)y) + (ax + 2by)oo,]
[ala, ab + a2w].

Thus there exists a C-" [c1 ce[ SLe(Z) such that
L C21 _!

[1 oo] [ aa a2b] [c10

[1, cod] [ aa2x + a2by albx nt- (b2 + D)y ]
a2y ax -+- 2by

By comparing entries we have
(4) ala.c + a2bc.l- aax + a2by
(5) ala.c. + aabc albx + (b -+- D)y
(6) a2c2- ay
(7) a2c alx + 2by.

From (4) and (6) we get that c x and c2 Y, and from (5) and (7)
we get that c22 (ax-b 2bx)/a and c2- y(D- b)/(ala). Since det C

1 we easily determine that (1) holds, and since ce and c2 are integers we
see that (2) and (3) hold. Finally, we complete the proof of Claim 1 by
observing that gcd(x, y) gcd(Q, c2) 1.

Let g gcd(a, a2) and set a a/g for i 1, 2. We may assume
without loss of generality that a > a --> 1. By (1) we have coprime integers
x and y such that
(8) (agax + (ab + a- 1)y)- Dy= ag ala.
(9) ga’l(gax + (2b + a- 1)y)

,[ (D- (ab+a 1) 2
(1 O) a2g aa. y.
If y 0 than by (8)

(ogax) cr g aa.
whence, ala’ a contradiction. Therefore y 4: 0.

Claim 2. g]y. Suppose that g does not divide y. Then there exists a

prime p with pe dividing g but not dividing y. If p 2 then since

(11) g (2b + a- 1)y
from (9) we must have a 1. Thus, from (10), D =-(ab+ a-1)2=
b2(mod 4). This is a contradiction since D =fDo with DO =-2, 3(rood 4)
and f is odd. Hence, p > 2 and from (11) we get that p[(ab+ -- 1).
Hence, from (8), p21D whence b If. However, p igl M and gcd(M, f) 1,
a contradiction which secures the Claim 2.

Now set y’ y/g. From (8) w’e now get that
(12) (aax + (ab
Since (y’) _> 1 then (12) implies that D <_ (aax + (ab -+- a- 1)yr) 2

D(y’) D)/a aa aa. However, 1
contradiction which secures the theorem.

Corollary 1. If b is any integer with lab+ -- 1[ /-- D and M is

any proper divisor of N(b + ) and gcd(M, f) I with f odd then h
r(M)
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Proof If M N(wd) then N(b + cod) >- N(wd) i.e., ((ab + a- 1) z

D)/(2a) >_ ((a-- 1)- D)/a which implies that (ab + a-- 1)->
2(a- 1) D; i.e., that ab -+- a- 11 _> /-- D a contradiction. The result
now follows from Theorem 1.

Corollary 2 (Rabinowitsch [8]). If A- Ao < 0 is a discriminant then

h 1 if and only if
F (x) ( (ax + a 1) D)/ a

is a prime for all non-negative integers x <-- A I/4 1.
Proof. First we observe two facts.
1. Fd (b) N(b + cod), and
2. If 0 N b <_ A ]/4 1 then Fd(b) K N(wd) .
Hence, if Fd(b) is not prime for some non-negative integer b <-IA I/4

1 then there exists a divisor M > 1 of Fd(b) with M < N(wd). Hence, by
Theorem 1, hd --> v(M) _> 2. Conversely, if hd > 1 then there exists a primi-
tive, reduced, non-principal ideal I [a, b -+- wd] with 0 N b < a < Md

/--A/3 <-IAI/4-1" whence, N(b + cod) <--N(wd) (see [1, 2]). Set
Fd(b) N(b + cod) and observe that b K AI/4 1. Since a lFd(b) and I
is not principal then Fd (b) cannot be prime.

Finally we illustrate the sharpness of our bound in Theorem 1.

Table. Lower bounds for hd when A A < 0, and class group structure for

D a ’b N(b+ w) M N(w) r(M) h C
14 1 2 18 6 14 4 4 C4
23 2 1 8 4 6 3 3 C
26 1 8 90 18 26 6 6 C C
41 1 7 90 30 41 8 8 C8
110 1 40 1710 90 ii0 12 12 C. x C x C3
iii 2 4 48 24 28 8 8 C8
230 1 20 630 210 230 16 20 C C. C
303 2 4 96 48 76 10, 10 C,,x C
337 1 53 3146 286 337 8 8 C8
357 1 4 112 ,56 357 8 8 C. x Cz x C
379 2 5 125 25 95 3 3 C3
411 2 16 375 75 103 6 6 C. C
443 2 11 243 81 111 5 5 C
466 1 22 950 190 466 8 8 Cs
467 2 26 819 63 117 6 7 C7
473 1 11 594 198 473 12 12 C x C x C
485 1 55 3510 270 485 16 20 C. x C. x C
499 2 24 725 25 125 3 3 C
555 2 7 195 15 139 4 4 C x Cz
1155 2 52 3045 105 289 8 8 C. x Cz x C,
1365 1 105 12390 210 1365 16 16 C, C. C. C
3315 2 97 10335 195 829 8 8 C. C, C.
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Remark 1. The last four entries in Table are interesting in that they
all have class groups of exponent e 2. In [6] Mollin was able to provide a
complete list of all complex quadratic fields with class groups of exponent 2,
under the assumption of a suitable Riemann Hypothesis. In point of fact IA]
--[A0l-3315 in the largest one. We also see that our Theorem 1 above
yields a much sharper bound than that given by Sasaki.

Acknowledgement. The authors thank the referee for suggestions which
simplified the presentation of the results herein.
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