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The work herein continues that of [5] to which we refer the reader for
background information and notation. This also complements the work of the
authors in [6] where we dealt with the real case.

Our principal result (Theorem 1 below) provides a sharp lower bound
for h, when 4 < 0 is the discriminant of any complex quadratic order, and
yields as a consequence a complete generalization of the well-known result
by Rabinowitsch [8] for h, = 1, and includes the more recent result by
Sasaki [9] for hao = 2. Furthermore, our results yield sharper bounds than
those given heretofore in the literature such as Oesterlé [7] and Buhler,
Gross and Zagier [2]. Most recently Sasaki [9] gave the following lower
bound
(%) hy, = d(N(b + w))
where b is any non-negative integer with b < |A4,|/4 — 1 and d(m) is the
number of (not necessarily distinct) prime divisors of m.

It is in the context of (%) that we couch our main result which will be
seen to be a much sharper bound as follows. In the following D = f* D,
where D, is the radicand of Q(vV4) = Q(/D,).

Theorem 1. Let A < 0 be a discriminant with odd conductor f. If b is any
integer and M is any divisor of N(b + w,) with M < N(w,) and ged(M, f)
=1 then hy = ©(M), the number of distinct positive divisors of M.

Proof. It suffices to show that if @, # a, are both divisors of M then
I, = [a,, b+ w,] is not equivalent to I, = [a,, b + w,]. Suppose, to the
contrary that I, ~ I,

Claim. There exist relatively prime integers x and y satisfying

(1) ((ax) + (ob+ 0 — Dy)? — Dy’ = o°aa,.
(2) a,| (ax+ @b+ o — 1y).
(3) o’a,a,| (D — (ob+ o — DD)y.

We only prove the case where 0 = 1 since the other case is similar.
Since I, ~ I, then there exists an element 7 € I, such that (I, = (a,) 1,
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(e.g. see [4, section 3, p. 128] and also [1, Lemma 2.6, p. 110]). If y = a,x +
(b + w,)y where x and y are rational integers then
[(a,a,x + a,by) + ayw,, (abx+ (b°+ D)y) + (a,x + 2by) w,]
= [a,a,, a,b + a,w,].

¢
Thus there exists a C = [Cu 12] € SL,(Z) such that

Ca1 Cap 5
a,a, a, Cu Cip | _
[1, @, [ 0 az] [021 022]_
[, w,] [alazx + a,by a,bx + (b + D)y
ay a,x + 2by
By comparing entries we have
(4) a,a,c,;, + a,be,; = aa,x + a,by
(5) a,a,¢,, + a,bc,, = a,bx + (b° + D)y
(6) AyC = QoY
(7) a,c,, = a,x + 2by.

From (4) and (6) we get that ¢;; = x and ¢, = y, and from (5) and (7)
we get that ¢, = (a,x + 2bx)/a, and ¢, = y(D — b*)/(a,a,). Since | det C|
= 1 we easily determine that (1) holds, and since ¢,, and ¢;, are integers we
see that (2) and (3) hold. Finally, we complete the proof of Claim 1 by
observing that ged(x, y) = gecd(cy, ¢5y) = 1.

Let g = gcd(a,, a,) and set a; = a,/g for i =1, 2. We may assume
without loss of generality that a; > a; = 1. By (1) we have coprime integers
X and y such that

(8) (oga,x + (ob + 0 — 1)y)* — Dy* = o’°g*aja;
(9) ga,| (gajx + 2b+ o — 1y)
(10) o’g*aa,| (D — (b + 0 — 1)Dy.

If y = 0 than by (8)
(0ga,x)’ = o’g’ala;;

whence, @} | @} a contradiction. Therefore y # 0.

Claim 2. g|y. Suppose that g does not divide y. Then there exists a
prime p with p° dividing g but not dividing y. If p = 2 then since
(11) gl @b+ o0— 1y
from (9) we must have o= 1. Thus, from (10), D = (¢b + o — D=
b*(mod 4). This is a contradiction since D = f°D, with D, = 2, 3(mod 4)
and f is odd. Hence, p > 2 and from (11) we get that p| (gb+ o — 1).
Hence, from (8), p°| D whence b| f. However, p| gl a,| M and ged(M, f) =1,
a contradiction which secures the Claim 2.

Now set ¥y’ = y/g. From (8) we now get that
(12) (odix + (b + 0 — 1)y’ — D(y")’* = o°aja;.
Since (y")® =1 then (12) implies that — D < (oajx + (ob + 0 — Dy)* —
D(y")* = o’°aja,, However, 1 < aja; < M < N(w,) = ((c — 1)’ — D)/c” a
contradiction which secures the theorem.

Corollary 1. If b is any integer with |ob+ o — 1| <y— D and M is
any proper divisor of N(b + w,) and gcd(M, f) = 1 with f odd then h, =
(M).
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Proof. 1f M = N(w,) then N(b+ w,)/2 = N(w,); ie., ((6b+ o—1)°
— D)/(26") = ((6 — 1)* — D)/o® which implies that (gb+ o — 1) 2>
2(c— 1) — D:ie, that |ob+ 0 — 1| = y— D a contradiction. The result
now follows from Theorem 1.

Corollary 2 (Rabinowitsch [8]).
hy, =1 if and only if

F,(x) = (ox+0—1)*—D)/o’

is a prime for all non-negative integers T < |A|/4 — 1.

Proof. First we observe two facts.

1. F,(b) = N(b + w,), and

2.f0<b<|A|/4 — 1 then F,(b) < N(wp>.

Hence, if F,(b) is not prime for some non-negative integer b < |A|/4
— 1 then there exists a divisor M > 1 of F,(b) with M < N(w,). Hence, by
Theorem 1, h, = (M) = 2. Conversely, if h, > 1 then there exists a primi-
tive, reduced, non-principal ideal I = [a, b + w,] with 0 S b < a < M, =
V=473 <|A|/4 —1; whence, N(b + w,) < N(w,)? (see [1, §2]). Set
F,(b) = N(b + w,) and observe that b < |A4|/4 — 1. Since a| F,(b) and I
is not principal then F,(b) cannot be prime.

Finally we illustrate the sharpness of our bound in Theorem 1.

If A= A4,<0 is a discriminant then

Table. Lower bounds for &, when 4, = A4 < 0, and class group structure for C,.

-D | o b |[Nb+w) | M | Nw,) | t(M) | by C,

14 1 2 18 6 14 4 4 C,

23 2 1 8 4 6 3 3 C,

26 | 1| 8 90 18 | 26 6 |6 C, x C,

41 1 7 90 30 41 8 8 C,

110 | 1 | 40 1710 90 | 110 12 |12] €,xC,xC,

111 2 4 48 24 28 8 8 C,

230 | 1 | 20 630 210 | 230 16 |20| C,xC,xC,

303 | 2 | 4 96 48 | 76 10 |10 C, x C,

337 1 53 3146 286 337 8 8 C,

357 | 1| 4 112 56 | 357 8 | 8 C, x C, X C,
© 379 2 5 125 25 95 3 3 C,

411 2 16 375 75 103 6 6 C,x C,

443 2 11 243 81 111 5 5 C,

466 1 22 950 190 466 8 8 C,

467 2 26 819 63 117 6 7 C,

473 1 11 594 198 473 12 12 C, X C, x C,

485 1 55 3510 270 485 16 20 C, X C, X Cq

499 2 24 725 25 125 3 3 C,

555 | 2 | 7 195 15 | 139 4 | 4 C, x C,
1155 | 2 | 52 3045 | 105 | 289 8 | 8| C,xC,xC,
1365 | 1 | 105 | 12390 | 210 | 1365 | 16 |16 |C, X C, X C, % G,
3315 | 2 | 97 | 10335 | 195 | 829 8 | 8| C,XC,XC,
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Remark 1. The last four entries in Table are interesting in that they
all have class groups of exponent ¢, = 2. In [6] Mollin was able to provide a
complete list of all complex quadratic fields with class groups of exponent 2,
under the assumption of a suitable Riemann Hypothesis. In point of fact | 4 |
=|A4,| = 3315 in the largest one. We also see that our Theorem 1 above
yields a much sharper bound than that given by Sasaki.

Acknowledgement. The authors thank the referee for suggestions which
simplified the presentation of the results herein.
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