9. A Serre Type Theorem for Affine Lie Superalgebras and Their Quantized Enveloping Superalgebras

By Hiroyuki YAMANE

Department of Mathematics, Osaka University (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1994)

Introduction. In 1985, Drinfeld [1] and Jimbo [2] introduced an *h*-adic topological C[[h]]-Hopf algebra $U_h \mathfrak{G}$ associated to a Kac-Moody Lie algebra \mathfrak{G} , which is now known as the quantum group or the quantized enveloping algebra. The algebra $U_h \mathfrak{G}$ is defined by generators and binary relations called the *q*-Serre relations. Let $U_h \mathfrak{B}_+$ and $U_h \mathfrak{B}_-$ be the positive and negative Borel-type Hopf subalgebras of $U_h \mathfrak{G}$. Drinfeld showed that there is a non-degenerate bilinear form $\langle , \rangle : U_h \mathfrak{B}_+ \otimes U_h \mathfrak{B}_- \to C((h))$ such that, under \langle , \rangle , $U_h \mathfrak{B}_-$ can be identified with a dual Hopf algebra of $U_h \mathfrak{B}_+$ with the opposite comultiplication. (Speaking more strictly, we must shift the topologies of $U_h \mathfrak{B}_+$ and $U_h \mathfrak{B}_-$ and replace $U_h \mathfrak{B}_+$ and $U_h \mathfrak{B}_-$ with certain Hopf subalgebras. See [8] and §3 of this note.) He also proved the existence of the universal *R*-matrix of $U_h \mathfrak{G}$ by using \langle , \rangle . His method is called the guantum double construction.

The purposes of this note are to exhibit the following results:

(i) A Serre type theorem for an affine Lie superalgebra \mathfrak{g} . We give defining relations of \mathfrak{g} satisfied by the Chevalley generators. We need not only binary relations but also trinormial and quadrinomial relations.

(ii) A definition of the quantized enveloping superalgebra $U_h g$ associated to g. We define the *h*-adic topological C[[h]]-Hopf superalgebra $U_h g$ by using generators and relations.

(iii) The existence of the universal *R*-matrix of a Hopf algebraization $U_{h}g^{\sigma}$ of $U_{h}g$. We show this fact by using the quantum double construction for $U_{h}g^{\sigma}$. (In [8], we gave an embedding $(\cdot)^{\sigma}$ from the category of Hopf superalgebras to the category of Hopf algebras. This fact might be known to experts.)

(iv) A topological freeness of the C[[h]]-module $U_h \mathfrak{g}$.

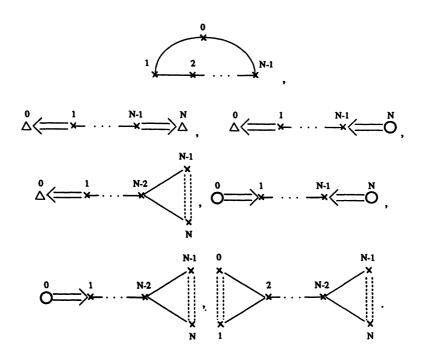
We have already shown the corresponding results for the finite dimensional simple Lie superalgebras of type A-G in [7], [8], [9].

Let $\mathfrak{g} = \mathfrak{g}(\mathfrak{E}, \Pi, p)$ be the Kac-Moody Lie superalgebra defined with the datum (\mathfrak{E}, Π, p) , the dual space \mathfrak{E} of a Cartan subalgebra \mathfrak{h} , the set $\Pi \subset \mathfrak{E}$ of simple roots $\{\alpha_0, \alpha_1, \ldots, \alpha_n\}$ and the parity function $\rho: \Pi \rightarrow$ $\{0,1\}$. We first define \mathfrak{g} abstractly by imitating the definition of the Kac-Moody Lie algebra given in §1.3 of Kac's text book [3]. Unfortunately, in the case of Lie superalgebras, the terminology "affine type" seems not to have been given the definite meaning, yet. For the present, we say that $\mathfrak{g}(\mathfrak{E}, \Pi, p)$ is of affine type if the Dynkin diagram $\Gamma = \Gamma(\mathfrak{E}, \Pi, p)$ can be H. YAMANE

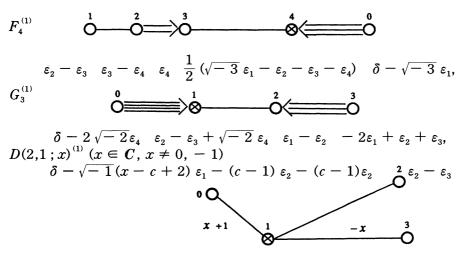
found in our reference [4]. In this note, we further assume that $n \ge 4$ if Γ is not of type $G_3^{(1)}$ nor $D(2,1;x)^{(1)}$ and that Γ is of distinguished type if Γ is of type $F_4^{(1)}$, $G_3^{(1)}$ and $D(2,1;x)^{(1)}$. In fact, the Hopf superalgebra structure of $U_n g(\mathscr{E}, \Pi, p)$ seems to depend on the choice of the datum (\mathscr{E}, Π, p) . For the terminologies in this note, see [7], [8] and their references. Details omitted here will be published elsewhere.

1. Dynkin diagrams of affine Lie superalgebras. Let $\mathscr{E} = (\bigoplus_{i=1}^{N} C\varepsilon_i)$ $\oplus C\delta \oplus C\Lambda_0$ be the N + 2 dimensional *C*-vector space. Define the symmetric bilinear form (,); $\mathscr{E} \times \mathscr{E} \to C$ by $(\varepsilon_i, \varepsilon_j) = \delta_{ij}$, $(\delta, \Lambda_0) = 1$ and $(\varepsilon_i, \delta) = (\varepsilon_i, \Lambda_0) = (\delta, \delta) = (\Lambda_0, \Lambda_0) = 0$. Let $\Pi = \{\alpha_0, \alpha_1, \ldots, \alpha_n\}$ be a linearly independent subset of \mathscr{E} , and $p: \Pi \to \mathbb{Z}/2\mathbb{Z}$ a function. We call α_i the simple roots and p the parity function. In this note, we consider the datum (\mathscr{E}, Π, p) associated to one of the following Dynkin diagrams $\Gamma = \Gamma(\mathscr{E}, \Pi, p)$ listed below as (i) and (ii). In Γ , the *i*-th dot is \bigcirc, \otimes or \bigcirc if and only if $((\alpha_i, \alpha_i), p(\alpha_i)) \in \mathbb{C}^* \times \{0\}, \{(0,1)\}$ or $\mathbb{C}^* \times \{1\}$ respectively where $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. The *i*-th dot is joined to the *j*-th dot $(i \neq j)$ by $|(\alpha_i, \alpha_j)|$ edges. Moreover the arrow points to the smaller of $|(\alpha_i, \alpha_i)|$ and $|(\alpha_j, \alpha_j)|$. In this note, we assume that the number of the dots of Γ is more than or equals to 5 if Γ is not of type $G_3^{(1)}$ or $\mathbb{D}(2, 1; x)^{(1)}$.

(i) ABCD types. In this stage, the simple roots α_i satisfy that $\alpha_0 \in \{\delta - \overline{\varepsilon}_1 + \overline{\varepsilon}_N, \delta - \overline{\varepsilon}_1 - \overline{\varepsilon}_2, \delta - \overline{\varepsilon}_1, \delta - 2\overline{\varepsilon}_1\}, \alpha_i = \overline{\varepsilon}_i - \overline{\varepsilon}_{i+1} \ (1 \le i \le N-1), \text{ and } \alpha_N \in \{\overline{\varepsilon}_N, 2\overline{\varepsilon}_N, \overline{\varepsilon}_{N-1} + \overline{\varepsilon}_N\}.$ Here $\overline{\varepsilon}_i = \sqrt{\pm 1} \varepsilon_i$ where the sign can be choosen arbitrarily. The dot \times stands for \bigcirc or \otimes . The dot \bigtriangleup stands for \bigcirc or \odot . The edge $\times \dots \times$ stands for \bigotimes or \bigcirc .



(ii) Exceptional types. Here the element written below the *i*-th dot denotes the *i*-th simple root α_i .



 $\sqrt{-1} \varepsilon_1 - \varepsilon_2$ $\sqrt{-1} (x - c) \varepsilon_1 + c \varepsilon_2 + c \varepsilon_3$

where $c = -x + \sqrt{2x(x+1)}$.

2. A Serre type theorem for $g(\mathscr{E}, \Pi, p)$ and defining relations of $U_h g(\mathscr{E}, \Pi, p)$. Put $\mathfrak{h} = \mathscr{E}^*$. We call \mathfrak{h} the Cartan subalgebra. Let $H_{\nu} \in \mathfrak{h}$ be the element such that $\mu(H_{\nu}) = (\mu, \nu)$ for any $\mu \in \mathscr{E}$. Let C[[h]] be the *C*-algebra of formal power series in the indeterminate *h*.

Definition. Let (\mathscr{E}, Π, p) be the datum in Section 1. We define the *h*-adic topological C[[h]]-superalgebra $U_n\mathfrak{g}(\mathscr{E}, \Pi, p)$ by generators $H \in \mathfrak{h}, E_i, F_i(0 \le i \le n)$ with parities $p(H) = 0, p(E_i) = p(F_i) = p(\alpha_i)$ and relations:

(vi)
$$E_{ijk} = E_{ikj}$$
 if **i**

No. 1]

H. YAMANE

- (vii)
- $$\begin{split} E_{043243} &= [2] \ E_{043234} \ \text{for type} \ F_4^{(1)}, \\ [2] \ E_{012312} &= [3] \ E_{012321} \ \text{for type} \ G_3^{(1)}, \end{split}$$
 (viii)
- $[[E_{10}, E_{12}]_{k}, E_{13}] = [x][[E_{10}, E_{13}]_{k}, E_{12}]$ for type $D(2,1;x)^{(1)}$, (ix)(2.5) the relations (2.4) with E_i 's replaced by F_i 's,

where we used the following notations: For $x \in C$, put $[x] = (e^{xh} - e^{xh})$ $e^{-xh}/(e^{h} - e^{-h}) \in C[[h]]$. Put $[X, Y] = XY - (-1)^{p(X)p(Y)}YX$. Put $Q^{+} =$ $\bigoplus \mathbf{Z}_{\geq 0} \alpha_i. \text{ For } \lambda, \mu \in Q^+, \text{ set } [X_{\lambda}, Y_{\mu}]_{h} = X_{\lambda} Y_{\mu} - (-1)^{p(\lambda)p(\mu)} e^{-(\lambda,\mu)h} Y_{\mu} X_{\lambda}$ where X_{λ} and X_{μ} satisfy $[H_{\nu}, X_{\lambda}] = (\nu, \lambda)X_{\lambda}$ and $[H_{\nu}, X_{\mu}] = (\nu, \mu)X_{\mu}$. Define $ad_{h}(X_{\lambda})(X_{\mu}) = [X_{\lambda}, X_{\mu}]_{h}$ and $(ad_{h}(X_{\lambda}))^{m}(X_{\mu}) = ad_{h}(X_{\lambda})(ad_{h}(X_{\lambda}))^{m-1}$ (X_u)). Put $a_{ii} = 2(\alpha_i, \alpha_i)/(\alpha_i, \alpha_i) \in \mathbb{Z}_{\leq 0}$ if $(\alpha_i, \alpha_i) \neq 0$. Let $E_{iik} = 0$ $\left[\cdots\left[\left[E_{i}, E_{i}\right]_{h}, E_{k}\right]_{h}, \cdots\right]_{h}$

We are going to define the Kac-Moody Lie superalgebra $g(\mathcal{E}, \Pi, p)$ by imitating the definition of the Kac-Moody Lie algebra in §1.3 of Kac's text book [3]: Let $\tilde{g}(\mathcal{E}, \Pi, p)$ be the C-Lie superalgebra defined by generators $H \in \mathfrak{h}, E_i, F_i$ with parities $p(H) = 0, p(E_i) = p(F_i) = p(\alpha_i)$ and the relations obtained by substituting 0 for h in (2.1-3). We define $q(\mathcal{E}, \Pi, p)$ as the quotient Lie superalgebra $\tilde{\mathfrak{g}}(\mathscr{E}, \Pi, p)/\mathfrak{r}$ where \mathfrak{r} is the ideal maximal among the ones such that $\mathfrak{r} \cap \mathfrak{h} = 0$.

Theorem A. Let (\mathscr{E}, Π, p) be the datum in Section 1. Defining relations of $\mathfrak{g}(\boldsymbol{E}, \Pi, p)$ satisfied by the generators $H \in \mathfrak{h}, E_i, F_i$ $(0 \le i \le n)$ are given by substituting 0 for h in (2.1-5).

3. Existence of a universal **R**-matrix associated to $U_{k}g(\mathcal{E}, \Pi, p)$. In Theorem 2.9.4 in [8], we defined the *h*-adic topological C[[h]]-Hopf superalgebra $U_h(\mathscr{E}, \Pi, p)$ in an abstract manner. By showing $U_h\mathfrak{g}(\mathscr{E}, \Pi, p) \cong$ $U_h(\mathscr{E}, \Pi, p)$, we have Theorems B and C.

Theorem B. (i) As a C[[h]]-module. $U_{\mu}g(E, \Pi, p)$ is topologically free.

(ii) $U_{\mu}\mathfrak{g}(\mathscr{E}, \Pi, p)$ is a topological Hopf superalgebra with coproduct Δ such that $\Delta(H) = H \otimes 1 + 1 \otimes H$, $\Delta(E_i) = E_i \otimes 1 + \exp(hH_{\alpha_i}) \otimes E_i$, $\Delta(F_i)$ $= F_i \otimes \exp(-hH_{\alpha}) + 1 \otimes F_i,$

(iii) $U_h g(\mathcal{E}, \Pi, p) / h U_h g(\mathcal{E}, \Pi, p) \cong U g(\mathcal{E}, \Pi, p)$ as C-Hopf superalgebras where $U_{\mathfrak{g}}(\mathfrak{E}, \Pi, p)$ is the universal enveloping algebra of $\mathfrak{g}(\mathfrak{E}, \Pi, p)$.

Let σ be the generator of $\mathbb{Z}/2\mathbb{Z}$. Let $\mathbb{Z}/2\mathbb{Z}$ act on $U_{h}\mathfrak{g}(\mathscr{E}, \Pi, p)$ by $\sigma X = (-1)^{p(X)} X (X \in U_k \mathfrak{g}(\mathscr{E}, \Pi, p)).$ We define the algebra $U_k \mathfrak{g}(\mathscr{E}, \Pi, p)$ p)^{σ} as the crossed product $U_k \mathfrak{g}(\mathscr{E}, \Pi, p) \otimes_{\sigma} \mathbb{Z}/2\mathbb{Z}$. We denote the element $X \otimes \sigma^c \in U_h \mathfrak{g}(\mathscr{E}, \Pi, p) \otimes_{\sigma} \mathbb{Z}/2\mathbb{Z}$ by $X \sigma^c$. Then we can regard $U_h \mathfrak{g}(\mathscr{E}, \mathcal{I})$ $[\Pi, p)^{\sigma}$ as the Hopf algebra with the coproduct Δ^{σ} such that $\Delta^{\sigma}(X\sigma^{c}) = \sum_{i} X_{i}^{(1)} \sigma^{(p(X_{i}^{(2)})+c)} \otimes X_{i}^{(2)} \sigma^{c}$ where $\Delta(X) = \sum_{i} X_{i}^{(1)} \otimes X_{i}^{(2)}$. Denote the antipode and the counit of $U_k \mathfrak{g}(\mathscr{E}, \Pi, p)^{\sigma}$ by S^{σ} and ε^{σ} respectively.

Let M_+ and M_- be subsets of $U_{k}\mathfrak{g}(\mathscr{E}, \Pi, p)^{\sigma}$ defined by $M_+ =$ $\{E_{i_1}\cdots E_{i_r}H_{(1)}\cdots H_{(z)}\sigma^c \mid H_{(k)} \in \mathfrak{h}, x, z, c \in \mathbb{Z}_{\geq 0}\} \text{ and } M_- = \{H_{(1)}\cdots H_{(z)}\sigma^c \mid d_{(z)}\sigma^c \in \mathbb{Z}_{\geq 0}\}$
$$\begin{split} F_{j_1} & \cdots F_{j_y} \mid H_{(k)} \in \mathfrak{h}, \ y, \ z, \ c \in \mathbb{Z}_{\geq 0} \}. \text{ Define } deg_+ : M_+ \to \mathbb{Z}, \ deg_- : M_- \to \mathbb{Z} \\ \text{by } deg_+ (E_{i_1} \cdots E_{i_x} H_{(1)} \cdots H_{(z)} \sigma^c) = \chi + z, \ deg_- (H_{(1)} \cdots H_{(z)} \sigma^c F_{j_1} \cdots F_{j_y}) = z + y. \text{ For } \varphi(h) \in \mathbb{C}[[h]] \setminus \{0\}, \text{ put } \nu(\varphi(h)) = \lim_{h \to 0} (h(d\varphi(h)/dh)/\varphi(h)). \end{split}$$
Let $U_h^{\checkmark} \mathfrak{b}_+^{\sigma}$ (resp. $U_h^{\checkmark} \mathfrak{b}_-^{\sigma}$) be a subset of $U_h \mathfrak{g}(\mathscr{E}, \Pi, p)^{\sigma}$ defined by $\{\sum_{i=1}^{\infty}$ $\varphi_i(h)X_i \ (X_i \in M_+ \ (\text{resp. } X_i \in M_-), \ \varphi_i(h) \in C[[h]]) \mid \lim_{i \to \infty} \left(\nu \ (\varphi_i(h)) - \mu_i(h) \right)$

 $2^{-1}deg_+(X_i)) = +\infty$ (resp. $\lim_{i\to\infty} (\nu(\varphi_i(h)) - 2^{-1}deg_-(X_i)) = +\infty)$). Then $U_h^{\checkmark} \mathfrak{b}_+^{\sigma}$ and $U_h^{\checkmark} \mathfrak{b}_-^{\sigma}$ are Hopf subalgebras. Let C((h)) be the quotient field of C[[h]].

Theorem C. There is a non-degenerate C[[h]]-bilinear form $\langle , \rangle : U_h^{\checkmark} \mathfrak{b}_+^{\sigma} \times U_h^{\checkmark} \mathfrak{b}_+^{\sigma} \to C((h))$ determined by the conditions: (i) $\langle \sigma^c, H \rangle = 0, \langle \sigma^c, F_j \rangle = 0, \langle H, F_j \rangle = 0, \langle H, \sigma^d \rangle = 0, \langle E_j, \sigma^d \rangle = 0,$ $\langle E_j, H \rangle = 0, \langle \sigma^c, \sigma^d \rangle = (-1)^{cd}, \langle H_{\mu}, H_{\nu} \rangle = -h^{-1}(\mu, \nu), \langle E_i, F_j \rangle = (e^{-h} - e^{h})^{-1}\delta_{ij}.$ (ii) $\langle X, xy \rangle = \langle \Delta^{\sigma}(X), x \otimes y \rangle, \langle XY, x \rangle = \langle Y \otimes X, \Delta^{\sigma}(x) \rangle, \langle S^{\sigma}(X), y \rangle$

 $S^{\sigma}(x) \rangle = \langle X, x \rangle, \langle X, 1 \rangle = \varepsilon^{\sigma}(X), \langle 1, x \rangle = \varepsilon^{\sigma}(x).$

Put $\bar{U}_{h}^{\sigma} = U_{h}\mathfrak{g}(\mathscr{E}, \Pi, p)^{\sigma} \otimes C((h))$. For $\gamma \in Q^{+}$, let U_{r}^{+} (resp. U_{-r}^{-}) be the C[[h]]-submodule of $U_{h}^{\checkmark} \mathfrak{b}_{+}^{\sigma}$ (resp. $U_{h}^{\checkmark} \mathfrak{b}_{-}^{\sigma}$) generated by the elements $E_{i_{1}} \cdots E_{i_{r}}$ (resp. $F_{i_{1}} \cdots F_{i_{r}} \sigma^{p(\gamma)}$) such that $\alpha_{i_{1}} + \cdots + \alpha_{i_{r}} = \gamma$. Let $\{e_{r,i}^{+} \in U_{r}^{+}\}$ and $\{e_{r,i}^{-} \in U_{r}^{-}\}$ be bases such that $\langle e_{r,i}^{+}, e_{r,i}^{-}\rangle = 0$ if $i \neq j$. Let $C_{r} = \sum_{i} \langle e_{r,i}^{+}, e_{r,i}^{-}\rangle^{-1} e_{r,i}^{+} \otimes e_{r,i}^{-} \in \bar{U}_{h}^{-\sigma} \oplus \bar{U}_{h}^{-\sigma}$. Put $t_{0} = (\sum_{i=1}^{N} H_{\varepsilon_{i}} \otimes H_{\varepsilon_{i}}) + H_{\delta} \otimes H_{\Lambda_{0}} + H_{\Lambda_{0}} \otimes H_{\delta}$, $c_{0} = 2^{-1} \sum_{a,b=0}^{1} (-1)^{ab} \sigma^{a} \otimes \sigma^{b}$.

Let $\bar{U}_{h}^{z\sigma}$ denotes the z-adic completion of $\bar{U}_{h}^{\sigma} \otimes_{C} C((z))$. For $\bar{\lambda} = (\lambda_{0}, \ldots, \lambda_{n}) \in (C((z))^{\times})^{n+1}$, define a Hopf algebra map $\rho_{\bar{\lambda}} : \bar{U}_{h}^{\sigma} \to \bar{U}_{h}^{z\sigma}$ by $\rho_{\bar{\lambda}}(\sigma) = \sigma$, $\rho_{\bar{\lambda}}(H) = H$, $\rho_{\bar{\lambda}}(E_{i}) = \lambda_{i}E_{i}$, $\rho_{\bar{\lambda}}(F_{i}) = \lambda_{i}^{-1}F_{i}$. We say $\lambda = (\lambda_{0}, \ldots, \lambda_{n}) > \bar{\mu} = (\mu_{0}, \ldots, \mu_{n})$ if $\lambda_{i}/\mu_{i} \in zC[[z]]$ for all *i*. For $\bar{\lambda} > \bar{\mu}$, we put $\tilde{R}(\bar{\lambda}, \mu) = (\sum_{\gamma \in Q^{+}} \rho_{\bar{\lambda}} \otimes \rho_{\bar{\mu}}(C_{\gamma})) \cdot e^{-ht_{0}} \cdot c_{0} \in \bar{U}_{h}^{z\sigma} \otimes \bar{U}_{h}^{z\sigma}$. Define $\tau : \bar{U}_{h}^{z\sigma} \otimes \bar{U}_{h}^{z\sigma} \to \bar{U}_{h}^{z\sigma} \to \bar{U}_{h}^{z\sigma} \otimes \bar{U}_{h}^{z\sigma} \to \bar{U}_{h}$

Proposition. Let $\bar{\lambda}$, $\bar{\mu}$, $\bar{\nu} \in (C((z))^{\times})^{n+1}$ be such that $\bar{\lambda} > \bar{\mu} > \bar{\nu}$. Then we have:

(i) The inverse of $\tilde{R}(\bar{\lambda}, \bar{\mu})$ is given by $\tilde{R}(\bar{\lambda}, \bar{\mu})^{-1} = S^{\sigma} \otimes id(\tilde{R}(\bar{\lambda}, \bar{\mu})).$ (ii) $\tilde{R}(\bar{\lambda}, \bar{\mu})(\rho_{\bar{\lambda}} \otimes \rho_{\bar{\mu}} \Delta^{\sigma}(X))\tilde{R}(\bar{\lambda}, \bar{\mu})^{-1} = \rho_{\bar{\lambda}} \otimes \rho_{\bar{\mu}}(\tau(\Delta^{\sigma}(X)))(X \in \bar{U}_{h}^{\sigma})$ (iii) $\sum_{\tau \in Q^{+}} \rho_{\bar{\lambda}} \otimes \rho_{\bar{\mu}} \otimes \rho_{\bar{\nu}} (\Delta^{\sigma} \otimes id(C_{\tau}e^{-ht_{0}} \cdot c_{0})) = \tilde{R}(\bar{\lambda}, \bar{\nu})_{13}\tilde{R}(\bar{\mu}, \bar{\nu})_{23},$ $\sum_{\tau \in Q^{+}} \rho_{\bar{\lambda}} \otimes \rho_{\bar{\mu}} \otimes \rho_{\bar{\nu}} (id \otimes \Delta^{\sigma}(C_{\tau}e^{-ht_{0}} \cdot c_{0})) = \tilde{R}(\bar{\lambda}, \bar{\nu})_{13}\tilde{R}(\bar{\lambda}, \bar{\nu})_{12},$ (i) $\sum_{\tau \in Q^{+}} \rho_{\bar{\lambda}} \otimes \rho_{\bar{\mu}} \otimes \rho_{\bar{\nu}} (id \otimes \Delta^{\sigma}(C_{\tau}e^{-ht_{0}} \cdot c_{0})) = \tilde{R}(\bar{\lambda}, \bar{\nu})_{13}\tilde{R}(\bar{\lambda}, \bar{\nu})_{12},$

(iv) $\tilde{R}(\bar{\lambda}, \bar{\mu})$ satisfies the Yang-Baxter equation

 $\tilde{R}(\bar{\lambda}, \bar{\mu})_{12}\tilde{R}(\bar{\lambda}, \bar{\nu})_{13}\tilde{R}(\bar{\mu}, \bar{\nu})_{23} = \tilde{R}(\bar{\mu}, \bar{\nu})_{23}\tilde{R}(\bar{\lambda}, \bar{\nu})_{13}\tilde{R}(\bar{\lambda}, \bar{\mu})_{12}.$

Remark 1. Let g' = [g, g]/(center). For $U_{h}g'^{\sigma}$, we can also obtain results similar to the ones of this note. As the image of $\tilde{R}(\bar{\lambda}, \bar{\mu})$ under the vector representation of $U_{h}\widehat{sl}(L \mid M)'^{\sigma}$, we can recover the Perk and Schultz *R*-matrix [5], which is an extention (with $\mathbb{Z}/2\mathbb{Z}$ -parameters) of Jimbo's *R*-matrix obtained by using $U_{h}\widehat{sl}(L + M)'$.

Remark 2. Similarly to Tanisaki's argument [6], we can give analogues of the Casimir element and the Killing form for $U_{h}\mathfrak{g}(\mathscr{E}, \Pi, p)^{\sigma}$ by using \langle , \rangle .

No. 1]

H. YAMANE

References

- [1] Drinfeld, V. G.: Quantum groups. Proc. ICM Berkeley, vol.1 (1986); Amer Math. Soc., pp. 798-820 (1988).
- [2] Jimbo, M.: Quantum *R*-Matrix for the generalized Toda system. Commun. Math. Phys., 102, 537-547 (1986).
- [3] Kac, V. G.: Infinite Dimensional Lie Algebras. 3rd ed, Cambridge Univ. Press, Cambridge (1990).
- [4] Frappet, L., Sciattino, A., and Sorba, P.: Structure of basic Lie superalgebras and of their affine extentions. Commun. Math. Phys., 121, 457-500 (1989).
- [5] Perk, J. H. H., and Schultz, C. L.: Families of commuting transfer matrices in q-state vertex model. Non-linear Integrable System (eds. M. Jimbo and T. Miwa). World Scientfic, Singapore, pp. 326-343 (1983).
- [6] Tanisaki, T.: Killing forms, Harish-Chandra isomorphisms, and the universal R-matrix for quantum algebras. Infinite analysis. ibid., pp. 941–961 (1992).
- Yamane, H.: Universal *R*-matrices for quantum groups associated to simple Lie superalgebras. Proc. Japan Acad., 64A, 108-112 (1991).
- [8] —: Quantized enveloping algebras associated to simple Lie superalgebras and their universal *R*-matrices (to appear in Publ. RIMS Kyoto Univ., **30**, no. 1 (1994)).
- [9] —: Quantized enveloping algebras associated to simple Lie superalgerbas and their universal *R*-matrices. Proceeding of the 21-th International Conference on Differential Geometric Method in Theoretical Physics (eds. C. N. Yang, M. L. Ge and X. W. Zhou). World Scienticific, Singapore, pp. 313-316 (1993).