4. Kähler Magnetic Fields on a Complex Projective Space

By Toshiaki ADACHI
Department of Mathematics, Nagoya Institute of Technology
(Communicated by Heisuke Hironaka, M. J. A., Jan 12, 1994)

In this note we study trajectories of charged particles under the action of a Kähler magnetic field, a magnetic field corresponding to the Kähler form, on a complex projective space. We show that they are small circles on a totally geodesic embedded 2-dimensional sphere.

A magnetic field on a complete Riemannian manifold M is a closed 2-form B. Let $\Omega=\Omega_{\boldsymbol{B}}: T M \rightarrow T M$ denote the skew symmetric operator on the tangent bundle satisfying $\boldsymbol{B}(X, Y)=\langle X, \Omega(Y)\rangle$. We call a curve γ on M a trajectory for this magnetic field if it is a solution of the equation $\nabla_{\dot{\gamma}} \dot{\gamma}$ $=\Omega(\dot{\gamma})$. Every trajectory γ has constant speed because $\frac{d}{d t}\|\dot{\gamma}(t)\|^{2}=$ $2\langle\Omega(\dot{\gamma}(t)), \dot{\gamma}(t)\rangle=0$. If γ is a trajectory of constant speed c for a magnetic field \boldsymbol{B}, the curve $\sigma(t)=\gamma(t / c)$ is a trajectory of unit speed for the magnetic field $\boldsymbol{c}^{-1} \boldsymbol{B}$. We may therefore suppose trajectories are parametrized by their arc-length.

A magnenic field is called uniform if the associated skew symmetric operator is parallel $\nabla \Omega=0$. Typical examples of uniform magnetic fields are scalar multiples of the volume form k-dvol on Riemann surfaces. On surfaces of constant curvature trajectories of such magnetic fields are well-known. On a sphere trajectories are small circles, on a Euclidean plane they are circles (in usual sense), and they are all closed. On a hyperbolic plane the feature is quite different. When the strength $|k|$ is greater than 1 , trajectories are closed. But when it is not greater than 1 they are open (see [2] and also [5]).

We here give another example of uniform magnetic fields. Let (M, J) be a Kähler manifold and \boldsymbol{B}_{J} denote the Kähler form; $\boldsymbol{B}_{J}(X, Y)=\langle X, J Y\rangle$. Then the closed 2 -form $\boldsymbol{B}=k \boldsymbol{B}_{J}$ with constant k is a uniform magnetic field. We shall call such field a Kähler magnetic field. It is quite natural to study trajectories for Kähler magnetic fields on manifolds of constant holomorphic sectional curvature. Trivially we can conclude that trajectories for a Kähler magnetic field are congruent on a manifold of constant holomorphic sectional curvature. That is, for given two trajectories γ and σ (of unit speed) for a Kähler magnetic field, we have a holomorphic isometry φ with $\sigma=\varphi^{\circ} \gamma$.

In this note we show an explicit expression of trajectories for Kähler magnetic fields on a complex projective space. Let $\pi: S^{2 n+1} \rightarrow \boldsymbol{C} P^{n}$ denote the Hopf fibration of a standard sphere onto a complex projective space. The tangent space of $\boldsymbol{C} P^{n}$ at $\pi(x)$ can be identified with the horizontal subspace
of the tangent space of $S^{2 n+1}$ at x :

$$
T_{\pi(x)} \boldsymbol{C} P^{n}=\left\{[x, u] \mid u \in \boldsymbol{C}^{n+1},\langle x, u\rangle=0\right\}
$$

where $[x, u]$ denotes the orbit of (x, u) under the action $\lambda \cdot(x, u)=(\lambda x, \lambda u)$ of $U(1)=\{\lambda \in C| | \lambda \mid=1\}$ on to the tangent bundle of the unit sphere.

Theorem. (1) Every trajectory (of unit speed) for the Kähler magnetic field $k \boldsymbol{B}_{J}$ on a complex projective space $\boldsymbol{C P}^{n}(4)$ of holomorphic sectional curvature 4 is a simple closed curve of period $2 \pi / \sqrt{k^{2}+4}$.
(2) It lies on a totally geodesic embedded complex projective line.
(3) If $k \neq 0$, its horizontal lift on the sphere is a helix of order 3 with curvature $|k|$ and 1 .
(4) The trajectory γ with $\gamma(0)=\pi(x)$ and $\dot{\gamma}(0)=[x, u] \in U_{\pi(x)} \boldsymbol{C} P^{n}$ has the equation

$$
\gamma(t)=\pi\left(\left(1+a^{2}\right)^{-1}\left(e^{a i t}+a^{2} e^{b i t}\right) x+a\left(1+a^{2}\right)^{-1}\left(e^{b i t}-e^{a i t}\right) J u\right)
$$

where $a=\left(k+\sqrt{k^{2}+4}\right) / 2$ and $b=\left(k-\sqrt{k^{2}+4}\right) / 2$.
Proof. Let $\tilde{\nabla}$ denote the connection of the standard sphere. For horizontal vector fields X and Y we have the following relation [4]:

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\langle X, J Y\rangle J N
$$

where N is the outward unit normal on $S^{2 n+1} \subset \boldsymbol{C}^{n+1}$. Using this relation we find that any horizontal lift $\tilde{\gamma}$ of a trajectory γ for $k \cdot \boldsymbol{B}_{J}$ satisfies

$$
\left\{\begin{array}{l}
\tilde{\nabla} \quad \dot{\tilde{\gamma}}=\quad k \cdot J \dot{\tilde{\gamma}} \\
\dot{\nabla} \\
\dot{\tilde{\gamma}} \\
\dot{\tilde{\gamma}} \\
\dot{\tilde{\gamma}}=-k \dot{\tilde{\gamma}} \\
\dot{\tilde{\gamma}}
\end{array} J N=J N\right.
$$

which leads us to the third assertion. Regarding this curve on the sphere $S^{2 n+1}$ as a curve in \boldsymbol{C}^{n+1} we see that it satisfies the equation $\ddot{\gamma}(t)=k \cdot$ $J \dot{\tilde{\gamma}}(t)-\tilde{\gamma}(t)$. Under the initial condition $\tilde{\gamma}(0)=x$ and $\dot{\tilde{\gamma}}(0)=u$ we solve this linear ordinary differential equation and get that

$$
\tilde{\gamma}(t)=\left(1+a^{2}\right)^{-1}\left(e^{a i t}+a^{2} e^{b i t}\right) x+a\left(1+a^{2}\right)^{-1}\left(e^{b i t}-e^{a i t}\right) J u .
$$

This expression guarantees that $\tilde{\gamma}$ lies on a 3 dimensional sphere, hence implies the second assertion. By this we can conclude that γ is a small circle of geodesic curvature k on a sphere of curvature 4 , which leads us to the first assertion. (Paying an attention to the linearly independence of $x, J u$, one can also check this assertion by a direct calculation.)

References

[1] T. Adachi, S. Maeda and S. Udagawa: Circles in a complex projective space (in preparation).
[2] A. Comtet: On the Landau levels on the hyperbolic plane. Ann. of Phys., 173, 185-209 (1987).
[3] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry. I. Interscience Publishers (1968).
[4] B. O'Neil: The fundamental equations of a submersion. Michigan Math. J., 13, 459-469 (1966).
[5] T. Sunada: Magnetic flows on a Riemann surface (1993) (preprint, Tohoku University).

