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K-theoretic Groups with Positioning Map
and Equivariant Surgery*)’* *)

By Anthony BAK *** and Masaharu MORIMOTO .1>

(Communicated by Heisuke HIRONAKA, M. J. A., Jan. 12, 1994)

1. Introduction. Since 1990 the authors have studied equivariant
surgery on manifolds allowing half dimensional singular sets. The full detail
of obtained theory [3] is rather complicated. The purpose of this article is to
present an outline of the theory for use in Transformation Groups. We treat
material here in a restrictive way comparing with [3] in order to make the
paper easy reading. However we will describe the theory so far as one can
have important geometric applications. The following two theorems are exam-
ples of such applications.

Theorem 1.1 ([3]). A standard sphere S has a smooth, one fixed point ac-

tion of some finite group if and only if the dimension of S is greater than 5.
Moreover, if dim S > 5 then S has such an exotic action of As (the alternating
group of degree 5).

Background of this theorem is explained in [2], [4], and [10]. The corres-
ponding assertion in the category of locally linear actions was proven in [4].

After [11], we denote by N the class of all finite groups G having series
of normal subgroups P <] H <l G such that IPlis a power of p, H/P is
cyclic, and lG/H[is a power of q.

Theorem 1.2 ([8]). A finite group G admits a smooth, one fixed point action
on a standard sphere of some dimension if and only if G for any primes p
and q.

This theorem was proven by [12] under the hypothesis that G is abelian
of odd order. It was also shown in [9] that any finite nonsolvable group G
admits such exotic actions.

In the current paper G will be a finite group, R will be (the ring of
integers), Z(p) (the localization of Z’ at a prime p) or Q (the ring of rational
numbers), and A RIG] will be the group ring of G with coefficients in R.

2. Grothendieck-Witt rings. Let O be a finite G-set. A G-map cr from
O to a finitely generated A-module M is called a O-positioning map of M. If
O consists of a unique point then (M, c0 is nothing but a pointed module.

In order to generalize the ordinary Grothendieck-Witt ring GW(R, G)
(cf. [1] or [6]), we introduce the category Ha_inv(R, )as follows. The
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objects in this category are all triples (M, B, c) consisting of
M a finitely generated R-projective, R[G]-module,
B :M x M-- R a G-invariant, symmetric, nonsingular hermitian form

over R,
(hence the associated map M--* M# x B(x, ) is bijective,) and

cr -- M a positioning map.
The morphisms f (M, B, or) --* (M’, B’, ix’) of this category are all
R[G]-homomorphisms f :M--M" which preserve hermitian forms and
positioning maps. That is, B (x y) B" f(x) f(y) ) and
for all x, y M and T . A positioning map cr is said to be totally isotro-

pic or t-iso for short (resp. trivial or triv for short) if B(cr(O), or(O)) {0}
(resp. or(O)-- {0}). We denote by H_inv(R, 0) %, %-" t-iso, or triv, the
full subcategory of H_.(R, O) consisting of all (M, B, c) such that cr is
%. Now let KHo(R, G, 0), KHo(R, G, O)’- and KHo(R, G) be the
Grothendieck ring of the categories H_(R, ), H_,,(R, O) t-, and
H_.(R, 8)) respectively

For M (M, B, or) H_i(R, 0), a submodule U of M is called a
weak Quillen submodule of M if U is an R-direct, R[G]-submodule satisfying
U-C__ U +/-

and U or(O), where
U" {x M]B(x, y) 0 for all y U}.

Such (M, U) is called a weak Quillen pair. U/U has a hermitian form B
defined by

B ([x], [y]) B (x, y) (x, y U’)
if (M, U) is a weak Quillen pair. The Grothendieck-Witt group with posi-
tioning map GW0(R, G, O) is defined by

GWo(R, G, O) KHo(R, G, 0)/< [M] (U +/-
/ U, B +/- triv) >

where (M, U)runs over all weak Quillen pairs. Similarly, we obtain
GWo(R, G, O) -so and GWo(R, G) from KHo(R, G, 0)’- and KHo(R, G),
respectively. Let M (M1, B1, al) and M (M, B, a) Hv_,(R, 0).
Then the product MTM= (M(RMz, BTBe, aT a) is defined by

B T B(x@ y, x’@ y’) B(x, x’)B(y, y’) (x, x" M and y, y’ Mz),
and c 3- c(7") (7") @ c(T)(T O). The Grothendieck-Witt groups
above are commutative rings. In particular, GWo(R, G, O) has the identity
element [R, B, c], where G acts trivially on R, B(x, y) xy (x, y R)
and c(’) 1(7" O).

Prolmsition 2.1. The natural homomorphism G Wo(R, G) GWo(R, G,
O) t-so

is bijective, and the natural homomorphism GWo(R G) GWo (R G,
O) is injective. Moreover, GWo(R, G, O)/GWo(R, G) is a free R-module.

Proof There is a canonical retraction GWo(R G, O) t-is -- GWo(R G)
Thus the homomorphism (1) is injective. The surjectivity of (1) is obtained
from the fact that for (M, B, a) in Ha_inv(R, O)t-s, there is a weak Quil-

len submodule containing all o(T)(T O). The injectivity of (2) follows
from the exactness of the sequence

0---’ GWo(R, G) ’-’s--, GWo(R, G, O) ---, @ R,
(x,y) 0 0
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where the last homomorphism is defined by
[M, B, o] (B(a(x), a(y))) (x, y O).

The last assertion in the proposition follows from the exact sequence above.
3. Special Grothendieek-Witt rings. Let S be a conjugation invariant

subset of
G(2) {g Gig 1 and g =/= 1}.

S is regarded as a G-set via the conjugation G-action.
To an object (M, B, o) in H_i,,(R, S), we associate a function 17:M-- Map(S, R/2) by

(3.1) 17(x)(g) [B(c(g) x, gx)] ( R/2) for x M and g S.
Let SHa_inv(R, S) be the full subcategory of Ha_,,(R, S) consisting of all
objects (M, B, c) having trivial I7, i.e., 17(x)(g) 0 in R/2 for all x M
and g S. Let SH6_i,,(R, S) % (% t-iso or triv) be the full subcategory
of SHa_inv(R, S) consisting of all objects (M, B, c) with % positioning
map c.

In a parallel way to the Grothendieck-Witt rings GWo(R, G, S),
G Wo(R, G, S) t-is, and GWo(R, G), we obtain the special Grothendieck-Witt
groups

SGWo(R, G, S), saWo(R, G, S) t-so, and SG Wo(R G S)
from the categories

SHa_n (R, S) SHa_n (R, S) t-so
and SHv_n

For example,
SGWo(R, G, S)t KHo(R, G, S)/([M] [(U / U, B - triv)])

where (M, U) runs over all weak Quillen pairs in SHa_in(R, S) t’i’.
Proposition 3.2. The natural homomorphism SGWo (R, G, S) triv

SGWo(R, G, S) t-is
is surjective and the natural homomorphism SGWo(R, G,

S) t-is() SGWo(R, G, S) is injective. Moreover, SGWo(R, G, S)/SGWo(R,
G, S)t-is is a free R-module.

Proof The proof is quite similar to that of Proposition 2.1. We omit the
details.

Let M1 (MI, B, %) e H_in(R S) and M2 (M2, B, eel) SH_,
(R, S). Then the 17 associated to the product M TM is computed as fol-

I7 (x @ x)(g) [B(% (g) @ o (g) x @ x, gx @ gx)]
[B (or1 (g) x, gx) B.(o (g), gx2)(3.3) + B(x, gxl)B2(o(g) x2, gx.)]
[B(a (g) x, gx)B(.(g), gx) ].

By the formula (3.3), we can verify that the special Grothendieck-Witt
groups are commutative rings. We note that the identity object of Hv_i,,v(R, S)
belongs to SHa_i,,(R, S). Thus SGWo(R, G, S) is a commutative ring with
identity element. However SGWo(R, G, S) tiv

must not have the identity

element. The next proposition also follows from (3.3).
Proposition 3.4. SGWO (R G, s) triv

is a module over G Wo(R G)
4. Induction properties. In order to argue induction properties of the

special Grothendieck-Witt rings, we let O(H)= S fq H for H

_
G. It auto-
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matically holds that O(H) 10(K) O(H f? K)(H, K

_
G) and O((1}) 0.

Proposition 4.1. The correspondences H GWo(R, H, S f? H) and
H -’ SGWo(R, H, S H) are Green functors with identity element. The cor-
respondences H SGWo(R, H, S f H) t-is

and H SGWo(R, H, S f3 H) triv

are Green functors possibly without identity element. Moreover the last correspond-
ence is a Green module over the Green functor H GWo(R, H).

(For the definition of a Green functor, see [1, p. 2461 or [5, p. 1651.)
Theorem 4.2. Let be a conjugation invariant family of subgroups of G

satisfying U Hg((S f? I-I) x (S fl I) S x S. Let be an element in the
Burnside ring D(G) such that Resn 1 in D(H) for all H . Further let

1 be the identity element of D(G). Then (1- )SGWo(Z, G, S) 0 (resp.
(1 )i+SGWo(Z, G, S) O, for a certain integer - 1) if f contains all
2-hyperelementary (resp. cyclic) subgroups of G.

Proof It is easy to check that (19- fl)SGWo(Z, G, S) SGWo(Z,
G, S)-so.

Suppose that contains all cyclic subgroups of G. Let H be a
2-hyperelementary subgroup of G. By an elementary calculation, we can
show that Res(19- ) 4D(H) for sufficiently large l. (This holds for
all l

_
2h + 2 where h satisfies ]GI 2hm with rn odd (see [81).) Fix such

l

_
1. Let e be the identity element of G Wo(Z, G). By Theorems 1 and 3 of

[6], (1 fl)’ e 0. By Proposition 3.4, we get (1 B)SGWo(Z, G, S)
=0, and hence (I-)SGWo(Z, G, S)t-S-o. Thus, we conclude
(19- )+ISGWo(Z, G, S)- 0. We omit the proof for the case where :
contains all 2-hyperelementary subgroups of G.

Corollary 4.3. Let M H M(H) be a Green module over the Green functor
H SGWo(Z, H, S C H). Then, (1 fl)X 0 (resp. (1 )+tx 0) for
any x M(G) if contains all 2-hyperelementary (res. cyclic) subgroups of G.

Corollary 4.4. Let be a lower closed family of subgroups of G containing
all elements in and all cyclic subgroups of G. Suppose has the form
ua(H) [G/H] (a(H) Z). Then M(G) u:eIndM(H), and the res-
triction homomorphism Res :M(G) (HxM(H) is injective.

Remark. The induction results above can be sharpened by the (nontri-
vial) fact that the natural homomorphism SGWo(Z, G, S)---’ GWo(Z, G, S)
is injective.

5. Surgery obstruction group. Let 2 1 or --1 and let w:G--
{___ 1} be a homomorphism. Then A RIG] has the antiinvolution- defined
by (g6 agg)-= , w(g)aeg- (ae R). Let Q and S be conjugation
invariant subsets of G(2) such that g 2 for all g Q, and g for
all g S. We set Aq {aeg ag R and g G\ S}, As { aeg ae
R and g S}, and A A(Q)= (x- 25c, g lx A and g Q)R as

subsets of A.
A triple M (M, (,), q)of a finitely generated A-module M, a

2-hermitian form (, and a quadratic form q:M-- Aq/A is called a quadra-
tic module if the following conditions are fulfilled.

(Q1) (,) is biadditive.
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(Q2) (ax, by) b(x, y) d.
(Q3) (x, y) =2(y,x).
(Q4) q(gx) gq(x)g in Aq/A A/(A + As).
(Qh) q(x + y) q(x) q(y) (x, y) in Aq/A A/(A + As).

(Q6) q() + 2q) (x, x) in A AlAs where q(’) is a lifting of q(x).
(x, y M, a, b A, and g G.) Let Q(A) Q(A, Q, S) be the categ-
ory of all quadratic modules M-- (M, (,), q)such that M is stably free
over A and (,)is nonsingular. Let 0 be a finite G-set. Let Q(A, O)-
Q(A, Q, S, O) be the category of all M-- (M, (,), q, a) where (M, (,),
q) Q(A) and x" 0 --- M is a positioning map. An A-direct summand L of
M is called a lagrangian of M if L is free over A, (L, L) 0, q(L) O,
L Lx, and c(O) c L. If M has a lagrangian then M is called null. Define
KQo (A, Q, S, O) to be the Grothendieck group of the category Q(A, Q, S,
O) and set

WQo(A, Q, S, O)= KQo(A, Q, S, O)/(null modules}.
In the remainder of this section we set 0 S. We associate a function

I7. M--* Map(S, R/2) to M (M, (,), q, a) Q(A, Q, S, S) by
17 (x)(g) [s((a(g) x, gx})] (x M, g S),

where s" A-- R is the homomorphism defined by s(ga agg) al(ae R).
Let SQ(A, Q, S, S)be the category of all M having trivial I7. Define
SKQo(A, Q, S, S) to be the Grothendieck group of the category SQ(A, Q,
S, S) and set

SWQo(A, Q, S, S) SKQo(A, Q, S, S)/(null modules}.
Now let n 2k be an even integer

_
6, and/ (-- 1) k. Set

Wn(R, G, Q, S, S) SWQo(A, Q, S, S).
We can define Wn(R, G, Q, S, O) for more general O, but we omit such
generalization for simplicity.

Proposition 5.1. The correspondence H- W,(R, H, Q H, S N H,
S H) is a Macleey functor, moreover a Green module over the Green functor
H SGWo(Z, H, S H).

6. G-surgery theorem. Let n- 2k be an even integer

_
6. Manifolds

and group actions on them should be understood to be smooth. Let X be a
G-manifold without boundary. Suppose the conditions (6.1)-(6.4).

(6.1) X is compact, connected, simply connected, oriented, and of dimen-
sion n.

(6.2) dim XH

_
k for any H

_
G, H {1}.

(6.3) If dim XH: k (H

_
G)then IH[-2 and XH

is connected and
orientable so that each g XH X-- (g G) is orientation preserving.

(6.4) dim(XH X)
_
k-2 whenever dimXH= k and dimX=

k-- 1 (H, K_ G).
The orientation homomorphism w-- wx" G--* {+-- 1} is defined by set-

ting w(g) 1 (resp. 1) for g G acting on X as an orientation preserv-
ing (resp. reversing) transformation. This defines an antiinvolution on A
R[G]. We set / (- 1) k, Q= {g G(2) ldimXe- k- 1}, and S=
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{g G(2) [dim Xg k}. Denote by T(X) the tangent bundle of X.
Let Y be another G-manifold satisfying (6.1)-(6.4) for X replaced by Y

and let be a G-vector bundle over Y.
Theorem 6.. Let f" X--* Y be a degree one G-map and b" T(X)-- f*a stable G-vector bundle isomorphism. Suppose the following conditions (N1) and

(N2).
(N1) f is k-connected (i.e., f#" zci(X)--* rci(Y) is surjective whenever

_
k).

(n2) Kk(f ;R) Ker[f. Hk(X ;R) --, H(Y ;R)] is stably R[G]-free.
Then (f, b) determines a unique element a(f, b) in the group Wn(R, G, Q,
S, S) having the property: If a(f, b) 0 then (f, b) is converted, by
G-surgery in the free part, to (f’, b’) such that X" satisfies (6.1) for X replaced
by X" and f’: X’-- Y is a k-connected, R-homology equivalence, where b’:
T(X’) f’*. (In particular, X"n X for any subgroup H 4: {1}.)

Remark. If fn’X’-* yi is an R-homology equivalence for any
hyperelementary subgroup H 4: (1} then the condition (N2) automatically
follows from (N 1).
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