15. Commuting Families of Symmetric Differential Operators

By Hiroyuki OCHIAI,*) Toshio OSHIMA,**) and Hideko SEKIGUCHI**)

(Communicated by Shokichi IYANAGA, M. J. A., Feb, 14, 1994)

Introduction. Many commuting families of differential operators or completely integrable quantum systems have been constructed in connection with root systems (cf. [10] and references therein). Such families often have a certain symmetry in coordinates.

The radial parts of invariant differential operators on symmetric spaces give a good example of a commuting family of differential operators (cf. [1]). In this case some parameters take only some discrete values determined by the dimensions of the root spaces for the symmetric spaces.

On the other hand, [12] generalized the example to have holomorphic parameters if the root system is of type A_n . The same generalization was given by [2], [3], [4], [7], [8] in general root systems. If the root system is of classical type, their operators give examples of the commuting families studied in this note (cf. Remark 3 iii)). Namely we shall determine all the families under the assumption of a symmetry in coordinates.

Let W be the Weyl group of type A_{n-1} with $n \ge 3$ or of type B_n with $n \ge 2$ or of type D_n with $n \ge 4$. We identify W with the group of the coordinate transformations

 $(x_1, \dots, x_n) \mapsto (\varepsilon_1 x_{\sigma(1)}, \dots, \varepsilon_n x_{\sigma(n)})$ of \mathbf{R}^n , where σ are the elements of the *n*-th symmetric group \mathfrak{S}_n and $\begin{cases} \varepsilon_1 = \cdots = \varepsilon_n = 1 & \text{if } W \text{ is of type } A_{n-1}, \\ \varepsilon_1 = \pm 1, \cdots, \varepsilon_n = \pm 1 & \text{if } W \text{ is of type } B_n, \\ \varepsilon_1 = \pm 1, \cdots, \varepsilon_n = \pm 1 \text{ and } \# \{i; \varepsilon_i = -1\} \text{ is even if } W \text{ is of type } D_n. \\ We examine the Laplacian \\ \end{cases}$

$$P = -\frac{1}{2} \sum_{1 \le j \le n} \frac{\partial^2}{\partial x_j^2} + V(x)$$

on \mathbf{R}^n with a *W*-invariant potential V(x) which has enough *W*-invariant commuting differential operators. To be precise we assume that there exist *W*-invariant differential operators P_1, \ldots, P_n with

$$[P_i, P_i] = 0$$
 for $1 \le i < j \le n$

such that

$$\begin{cases} P = P_2 - \frac{1}{2} P_1^2, \\ P_j = \sum_{1 \le i_1 < \dots < i_j \le n} \partial_{i_1} \cdots \partial_{i_j} + R_j \text{ with ord } R_j < j \text{ for } 1 \le j \le n \\ \text{or} \end{cases}$$

*) Department of Mathematics, Rikkyo University.

^{**)} Department of Mathematical Sciences, University of Tokyo.

$$\begin{cases} P = -\frac{1}{2} P_1, \\ P_j = \sum_{1 \le i_1 < \dots < i_j \le n} \partial_{i_1}^2 \cdots \partial_{i_j}^2 + R_j \text{ with ord } R_j < 2j \text{ for } 1 \le j \le n \\ \text{or} \end{cases}$$

$$\begin{cases} P = -\frac{1}{2} P_1, \\ P_n = \partial_1 \cdots \partial_n + R_n \text{ with ord } R_n < n, \\ P = \sum_{i=1}^{n} \sum_{j=1}^{n} \partial_{i_j}^2 \cdots \partial_{i_j}^2 + R_j \text{ with ord } R_i < 2i \text{ for } 1 \le i \le n \end{cases}$$

 $\begin{bmatrix} P_j = \sum_{1 \le i_1 < \dots < i_j \le n}^n \partial_{i_1}^2 \cdots \partial_{i_j}^2 + R_j & \text{with ord } R_j < 2j & \text{for } 1 \le j \le n-1, \\ \text{if the type of } W & \text{is } A_{n-1} & \text{or } B_n & \text{or } D_n, \text{ respectively. Here for simplicity we put} \\ \partial_i = \frac{\partial}{\partial x_i} & \text{and ord } R_j & \text{are the orders of differential operators } R_j. \end{bmatrix}$

In this note, we assume that the coefficients of the differential operators are extended to holomorphic functions on a Zariski open subset Ω' of an open connected neighborhood Ω of the origin of the complexification C^n of \mathbb{R}^n . Namely there exists a non-zero holomorphic function ϕ on Ω with $\Omega' = \{x \in \Omega ; \phi(x) \neq 0\}$.

Determination of the commuting families. The first theorem says that the potential V(x) is only allowed to be a special function.

Theorem 1. Under the assumption in the introduction, we can conclude

$$V(x) = \sum_{\substack{1 \le i < j \le n \\ 1 \le i < j \le n}} u(x_i - x_j) + u(x_i + x_j)) + \sum_{\substack{1 \le j \le n \\ 1 \le j \le n}} v(x_j) \text{ if } W \text{ is of type } B_n,$$

$$V(x) = \sum_{\substack{1 \le i < j \le n \\ 1 \le i < j \le n}} (u(x_i - x_j) + u(x_i + x_j)) \quad \text{if } W \text{ is of type } D_n.$$
Here $u(t)$ and $v(t)$ are following functions with complex numbers C_1, C_2, \ldots :
If W is of type A_{n-1} with $n \ge 3$,
(1) $u(t) = C_1 \mathcal{P}(t) + C_2.$
If W is of type B_n with $n \ge 3$,
(2) $\begin{cases} u(t) = C_1 \mathcal{P}(t) + C_2, \\ v(t) = \frac{C_3 \mathcal{P}(t)^4 + C_4 \mathcal{P}(t)^3 + C_5 \mathcal{P}(t)^2 + C_6 \mathcal{P}(t) + C_7}{\mathcal{P}'(t)^2} \end{cases}$
or
(3) $u(t) = C_1 t^{-2} + C_2 t^2 + C_3 \text{ and } v(t) = C_4 t^{-2} + C_5 t^2 + C_6$
or
(4) $u(t) = C_1 \text{ and } v(t) \text{ is any even function.}$
If W is of type D_n with $n \ge 4$, then u is (2) or (3).
If W is of type D_n with $n \ge 4$, then u is (2) or (3) or (4) or
(5) $\begin{cases} u(t) = \frac{C_3 \mathcal{P}(\frac{t}{2})^4 + C_4 \mathcal{P}(\frac{t}{2})^3 + C_5 \mathcal{P}(\frac{t}{2})^2 + C_6 \mathcal{P}(\frac{t}{2}) + C_7}{\mathcal{P}'(\frac{t}{2})^2}, \end{cases}$

or

,

H. OCHIAI, T. OSHIMA, and H. SEKIGUCHI

(6)
$$\begin{cases} u(t) = C_1 \mathcal{P}(t) + C_2 \frac{\left(\mathcal{P}\left(\frac{t}{2}\right) - e_3\right)^2}{\mathcal{P}'\left(\frac{t}{2}\right)^2} + C_3, \\ v(t) = C_4 \mathcal{P}(t) + \frac{C_5}{\mathcal{P}(t) - e_3} + C_6 \end{cases}$$

or (7)

 $v(t) = C_1$ and u(t) is any even function.

In the above theorem, $\mathscr{P}(t)$ is the Weierstrass elliptic function $\mathscr{P}(t \mid 2\omega_1, 2\omega_2)$ with primitive half-periods ω_1 and ω_2 which are allowed to be infinity and e_3 is a complex number satisfying ${\mathscr{P}'}^2 = 4(\mathscr{P} - e_1)(\mathscr{P} - e_2)(\mathscr{P} - e_3)$ (cf. [14]). In particular

$$\mathscr{P}(t \mid \sqrt{-1}\pi, \infty) = \sinh^{-2}t + \frac{1}{3} \text{ and } \mathscr{P}(t \mid \infty, \infty) = t^{-2}.$$

Then we note that (u(t), v(t)) in (2) has 9 complex parameters including the periods.

Theorem 2. i) If W is of type B_n , the expression of V(x) by u and v is not unique and then we may assume that the coefficient of $\partial_1 \partial_2$ of P_2 equals $2u(x_1 - x_2) - 2u(x_1 + x_2)$ without changing the commuting algebra $C[P_1, \ldots, P_n]$.

ii) If W is not of type A_{n-1} or if W of type A_{n-1} and ord $R_3 < 2$, then $C[P_1, \ldots, P_n]$ is uniquely determined by u or (u, v).

iii) The commuting differential operators P_1, \ldots, P_n exist for P with the potential V(x) defined by u and v of the form (1), (2), (4), (5), (6) and (7) according to the type of W, where C_1, \ldots are any complex numbers.

If W is of type A_{n-1} , the commuting differential operators are given by

$$P_{k} = \sum_{0 \le j \le \left[\frac{k}{2}\right]} \frac{1}{2^{j} j! (k - 2j)!} \sum_{\sigma \in \mathfrak{S}_{n}} \sigma(u(x_{1} - x_{2})u(x_{3} - x_{4}) \cdots u(x_{2j-1} - x_{2j})\partial_{2j+1}\partial_{2j+2} \cdots \partial_{k})$$

for k = 1, ..., n (cf. [10] and [11]).

If W is of type B_n and

$$u(t) = C_5 \mathscr{P}(t), \quad v(t) = \sum_{j=1}^4 C_j \mathscr{P}(t+\omega_j) - \frac{C_0}{2}$$

with complex numbers C_0, \ldots, C_5 and $\omega_3 = -(\omega_1 + \omega_2)$ and $\omega_4 = 0$, then the commuting operators are given by

$$P_{n}(C_{0}) = \sum_{k=0}^{n} \frac{1}{k!(n-k)!} \sum_{\sigma \in \mathfrak{S}_{n}} \sigma(q_{(1,\dots,k)} \Delta^{2}_{(k+1,\dots,n)})$$

(cf. [5]), where

$$\begin{split} \Delta_{\{1,\dots,k\}} &= \sum_{0 \le j \le \left[\frac{k}{2}\right]} \frac{1}{2^{k} j! (k-2j)!} \sum_{w \in W(B_{k})} \varepsilon(w) w(u(x_{1}-x_{2}) u(x_{3}-x_{4}) \cdots \\ & \cdots u(x_{2j-1}-x_{2j}) \partial_{2j+1} \partial_{2j+2} \cdots \partial_{k}), \\ q_{\{1,\dots,k\}} &= \sum_{I_{1} \prod \cdots \prod I_{\nu} = \{1,\dots,k\}} T_{I_{1}} \cdots T_{I_{\nu}}, q_{\phi} = 1, \\ T_{\{1,\dots,k\}} &= (-C_{5})^{k-1} \left(\frac{C_{0}}{2} T_{\{1,\dots,k\}}^{0}(1) - \sum_{j=1}^{4} C_{j} T_{\{1,\dots,k\}}^{0}(\mathcal{P}(t+\omega_{j}))\right), \end{split}$$

[Vol. 70(A),

$$\begin{split} T^{0}_{(1,\ldots,k)}(\phi) &= \sum_{I_{1}\Pi\cdots\Pi_{\nu}=\{1,\ldots,k\}} (-1)^{\nu-1}(\nu-1)! S_{I_{1}}(\phi)\cdots S_{I_{\nu}}(\phi), \\ S_{(1,\ldots,k)}(\phi) &= \sum_{w\in W(B_{k})} w(\phi(x_{1})\mathcal{P}(x_{1}-x_{2})\mathcal{P}(x_{2}-x_{3})\cdots \mathcal{P}(x_{k-1}-x_{k})) \end{split}$$

Here $W(B_k)$ and $W(D_k)$ are the Weyl groups of type B_k and D_k , respectively, $W(B_k)$ and $W(D_k)$ and \mathfrak{S}_k are realized as groups of coordinate transformations of \mathbf{R}^k . For $w \in W(B_k)$, $\varepsilon(w) = 1$ if $w \in W(D_k)$ and -1 otherwise, the sums for I_1, \ldots, I_ν run over all the partitions of $\{1, \ldots, k\}$, and for a subset I of $\{1, \ldots, n\}$, we define $\Delta_I = \sigma(\Delta_{(1,\ldots,k)})$ etc. by $\sigma \in \mathfrak{S}_n$ and k = # I with $\sigma(\{1, \ldots, k\}) = I$.

Expanding $P_n(C_0)$ into a polynomial function of the parameter C_0 , the operators P_j are given by the coefficients of C_0^{n-j} in the expansion. In fact we have $[P_n(C_0), P_n(C_0')] = 0$.

If W is of type D_n , we have only to put $C_1 = C_2 = C_3 = C_4 = 0$ and $P_n = \Delta_{\{1,\dots,n\}}$ in the above definition. See [6] for other cases of type B_2 .

Remark 3. i) If (u, v) is of the form (3), P_j do not exist in general and we need operators of higher order (cf. [10]).

ii) If (u, v) is given by (4), then $C[P_1, \ldots, P_n]$ equals the totality of \mathfrak{S}_n -invariants in $C\left[-\frac{1}{2}\partial_1^2 + v(x_1), \ldots, -\frac{1}{2}\partial_n^2 + v(x_n)\right]$.

iii) If $2\omega_1 = \sqrt{-1}\lambda^{-1}\pi$ and $\omega_2 = \infty$ with $\lambda \neq 0$, (2) is reduced to $\begin{cases} u(t) = C'_1 \sinh^{-2}\lambda t + C'_2, \\ v(t) = C'_3 \sinh^{-2}\lambda t + C'_4 \sinh^{-2}2\lambda t + C'_5 \sinh^2\lambda t + C'_6 \sinh^2 2\lambda t + C'_7. \end{cases}$

 $l v(t) = C'_3 \sinh^2 \lambda t + C'_4 \sinh^2 2\lambda t + C'_5 \sinh^2 \lambda t + C'_6 \sinh^2 2\lambda t + C'_7$. The commuting differential operators studied by Heckman-Opdam correspond to this case with $C'_5 = C'_6 = 0$. Moreover if $\omega_1 = \omega_2 = \infty$, then (2) is reduced to

$$\begin{cases} u(t) = C_1't^{-2} + C_2', \\ v(t) = C_3't^{-2} + C_4't^2 + C_5't^4 + C_6't^6 + C_7'. \end{cases}$$

iv) Some results stated in this note were announced in [13]. The precise statements and arguments will be given in [11], [5] and [6].

v) Replacing ∂_i , x_j , [,] and ord by $\sqrt{-1}p_i$, q_j , the Poisson bracket $\{,\}$ and the degree for p, respectively, we have the same statements as in Theorems 1 and 2, and moreover the operators P_1, \ldots, P_n give the integrals of the Hamiltonian corresponding to the Laplacian P (cf. [9] for completely integrable classical systems).

References

- Harish-Chandra: Representations of semisimple Lie groups. IV. Amer. J. Math., 77, 743-777 (1955).
- [2] G. J. Heckman: Root system and hypergeometric functions. II. Comp. Math., 64, 353-373 (1987).
- [3] —: An elementary approach to the hypergeometric shift operators of Opdam. Invent. Math., 103, 341-350 (1991).
- [4] G. J. Heckman and E. M. Opdam: Root system and hypergeometric functions. I. Comp. Math., 64, 329-352 (1987).

No. 2]

- [5] T. Oshima: Completely integrable systems with a symmetry in coordinates. UTMS 94-6, Dept. of Mathematical Sciences, Univ. of Tokyo (1994) (preprint).
- [6] H. Ochiai and T. Oshima: Commuting families of differential operators invariant under the action of a Weyl group. II (in preparation).
- [7] E. M. Opdam: Root system and hypergeometric functions. III. Comp. Math., 67, 21-49 (1988).
- [8] ----: ditto. IV. ibid., 67, 191-209 (1988).
- [9] M. A. Olshanetsky and A. M. Perelomov: Classical integrable finite dimensional systems related to Lie algebras. Phys. Rep., 71, 313-400 (1981).
- [10] —: Quantum integrable systems related to Lie algebras. ibid., 94, 313-404 (1983).
- [11] T. Oshima and H. Sekiguchi: Commuting families of differential operators invariant under the action of a Weyl group. UTMS 93-43, Dept. of Mathematical Sciences, Univ. of Tokyo (1993) (preprint).
- [12] J. Sekiguchi: Zonal spherical functions on some symmetric spaces. Publ. RIMS Kyoto Univ., 12 Suppl., 455-459 (1977).
- [13] H. Sekiguchi: Radial parts of Casimir operators on semisimple symmetric spaces. RIMS KôkyûRoku, 816, 155-168 (1992) (Japanese).
- [14] E. T. Whittaker and G. N. Watson: A Course of Modern Analysis. 4th ed., Cambridge University Press (1927).