17. Coefficient Bounds for the Inverse of a Function whose Derivative has a Positive Real Part

By Chou Shiqiong
Department of Mathematics, Changsha Communications Institute, People's Republic of China
(Communicated by Kiyosi ITÔ, M. J. A., March 14, 1994)

Abstract

In this paper we study the coefficient bounds for the inverse of a function whose derivative has a positive real part. We prove the conjecture posed by R. J. Libera and E. J. ZXotkiewicz [3].

1. Introduction and conclusion. Let S denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1}
\end{equation*}
$$

which are analytic and univalent in $\Delta=\{z:|z|<1\}$. De Branges [1] has proved that $a_{n}(n=2,3, \cdots)$ are bounded by those of the Koebe function, $k(z)=z+2 z^{2}+3 z^{3}+\cdots$, that is, $\left|a_{n}\right| \leqslant n(n \geqslant 2)$.

The inverse of $f(z)$ has a series expansion in some disk about the origin of the form

$$
\begin{equation*}
F(w)=w+\gamma_{2} w^{2}+\gamma_{3} w^{3}+\cdots \tag{2}
\end{equation*}
$$

It was shown early (see [2]) that the inverse of the Koebe function provides the best bound for all $\left|\gamma_{k}\right|$.

As is usually the case, we let \mathscr{P} be the family of functions

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \tag{3}
\end{equation*}
$$

regular and with $\operatorname{Re} p(z)>0(z \in \Delta)$. Furthermore we denote by J the class of all functions of form (1) which satisfies

$$
\begin{equation*}
\operatorname{Re} f^{\prime}(z)>0, z \in \Delta \tag{4}
\end{equation*}
$$

This is the family studied widely. Let the inverse of $f(z)$ belonging to J have the form (2). R. J. Libera and E. J. Złotkiewicz [3] found sharp bounds for the first six coefficients of $F(w)$; the extremal function is $\tilde{F_{0}}(w)$ which corresponds to $\tilde{f_{0}}(z)=-z-2 \log (1-z)$. They also conjectured that $\tilde{F_{0}}(w)$ gives the sharp upper bounds for other (perhaps even all) coefficients. In this paper we prove this conjecture, and the method is very succinct. Our conclusion is

Theorem. Let $f(z)$ be in J and the inverse of $f(z)$ be $F(w)=w+$ $\sum_{n=2}^{\infty} \gamma_{n} w^{n}$. Then

$$
\left|\gamma_{n}\right| \leqslant B_{n}(n=2,3, \cdots)
$$

where $B_{n}(n=2,3, \cdots)$ are the coefficients of $F_{0}(w)$ which corresponds to $f_{0}(z)=-z+2 \log (1+z)$. The function attaining the equalities is the inverse of $f_{0}(z)$.
2. The proof of the theorem. It's easy to know that $1 / p(z) \in \mathscr{P}$ when $p(z) \in \mathscr{P}$. So if $f(z) \in J$, then there exists a $p(z) \in \mathscr{P}$ such that

$$
f^{\prime}(z)=1 / p(z) \quad(z \in \Delta)
$$

Because $f^{\prime}(z) F^{\prime}(w)=1$, we have

$$
\begin{equation*}
1 / F^{\prime}(w)=1 / p(F(w)) \tag{5}
\end{equation*}
$$

that is

$$
\begin{equation*}
F^{\prime}(w)-1=p(F(w))-1=\sum_{n=1}^{\infty} C_{n}[F(w)]^{n} \tag{so}
\end{equation*}
$$

$$
\begin{align*}
\sum_{n=1}^{\infty}(n+1) \gamma_{n+1} w^{n} & =\sum_{n=1}^{\infty} C_{n}[F(w)]^{n} \tag{6}\\
& =\sum_{n=1}^{\infty}\left[\sum_{j=1}^{n} C_{j} K_{n-j}^{(j)}\right] w^{n}
\end{align*}
$$

where $K_{n-j}^{(j)}$ is the coefficient of w^{n} in the series expansion of $[F(w)]^{j}(j=$ $1,2, \cdots)$, specially, $K_{0}^{(n)}=1(n=1,2, \cdots)$. It is obvious that

$$
K_{n-j}^{(j)}=K_{n-j}^{(j)}\left(\gamma_{2}, \gamma_{3}, \ldots, \gamma_{n}\right) \quad(n \geqslant 2)
$$

is the non-negative coefficient polynomial of $\gamma_{k}(k=2,3, \ldots, n)$, so

$$
\begin{equation*}
\left|K_{n-j}^{(j)}\right| \leqslant K_{n-j}^{(j)}\left(\left|\gamma_{2}\right|,\left|\gamma_{3}\right|, \ldots,\left|\gamma_{n}\right|\right) \quad(n \geqslant 2) \tag{7}
\end{equation*}
$$

From (6) we have

$$
\begin{equation*}
2 \gamma_{2}=c_{1}, \quad(n+1) \gamma_{n+1}=\sum_{j=1}^{n} c_{j} K_{n-j}^{(j)} \quad(n \geqslant 2), \tag{8}
\end{equation*}
$$

thus
(9)

$$
\left\{\begin{aligned}
& 2\left|\gamma_{2}\right| \leqslant 2, \\
&(n+1)\left|\gamma_{n+1}\right| \leqslant \sum_{j=1}^{n}\left|c_{j}\right| \cdot\left|K_{n-j}^{(j)}\right| \\
& \leqslant 2 \sum_{j=1}^{n} K_{n-j}^{(j)}\left(\left|r_{2}\right|,\left|\gamma_{3}\right|, \ldots,\left|\gamma_{n}\right|\right) \quad(n \geqslant 2)
\end{aligned}\right.
$$

where we have used (7) and the well-known results $\left|c_{n}\right| \leqslant 2(n=1,2, \cdots)$.
On the other hand,

$$
f_{0}^{\prime}(z)=(1-z) /(1+z)
$$

so

$$
\begin{equation*}
1 / F_{0}^{\prime}(w)=\left(1-F_{0}(w)\right) /\left(1+F_{0}(w)\right) \tag{10}
\end{equation*}
$$

that is,

$$
F_{0}^{\prime}(w)=1+2 \sum_{n=1}^{\infty}\left[F_{0}(w)\right]^{n}
$$

Similarly to (8), we have

$$
\begin{equation*}
2 B_{2}=2, \quad(n+1) B_{n+1}=2 \sum_{j=1}^{n} H_{n-j}^{(j)} \quad(n \geqslant 2), \tag{11}
\end{equation*}
$$

where $H_{n-j}^{(j)}$ is the coefficient of w^{n} in $\left[F_{0}(w)\right]^{j}(j=1,2, \cdots)$, and

$$
\begin{equation*}
H_{n-j}^{(j)}=K_{n-j}^{(j)} \quad\left(B_{2}, B_{3}, \ldots, B_{n}\right) \quad(n \geqslant 2) \tag{12}
\end{equation*}
$$

is the non-negative coefficient polynomial of $B_{k}(k=2,3, \ldots, n), H_{0}^{(n)}=1$ ($n=1,2, \cdots$).

Next we prove that all $B_{n}(n=2,3, \cdots)$ are positive. From (10) we can also get

$$
1+F_{0}(w)=F_{0}^{\prime}(w)\left(1-F_{0}(w)\right)
$$

Substituting the series expansion of $F_{0}(w)$ into this equality, and comparing the coefficients of both sides, we get

$$
\begin{align*}
& B_{2}=B_{1}=1 \tag{13}\\
& (n+1) B_{n+1}=2 B_{n}+\sum_{j=1}^{n}(j+1) B_{j+1} \cdot B_{n-j}(n \geqslant 2)
\end{align*}
$$

For $B_{1}=1>0$ and $B_{2}=1>0$, from the recurrence formulas (13) we know all $B_{n}(n=2,3, \cdots)$ are positive, so from (11) and (12) we obtain

$$
\begin{align*}
(n+1) B_{n+1} & =2 \sum_{j=1}^{n} H_{n-j}^{(j)} \tag{14}\\
& =2 \sum_{j=1}^{n} K_{n-j}^{(j)}\left(B_{2}, B_{3}, \ldots, B_{n}\right) .
\end{align*}
$$

From the first inequality of (9) we can obtain
(15) $\quad\left|\gamma_{2}\right| \leqslant 1=B_{2}$.

Therefore, from the second inequality of (9) and by induction we obtain

$$
\begin{aligned}
(n+1)\left|\gamma_{n+1}\right| & \leqslant 2 \sum_{j=1}^{n} K_{n-j}^{(j)}\left(\left|r_{2}\right|,\left|r_{3}\right|, \ldots,\left|\gamma_{n}\right|\right) \\
& \leqslant 2 \sum_{j=1}^{n} K_{n-j}^{(j)}\left(B_{2} B_{3}, \ldots, B_{n}\right) \\
& =(n+1) B_{n+1} \quad(n \geqslant 2)
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left|\gamma_{n+1}\right| \leqslant B_{n+1} \quad(n \geqslant 2) . \tag{16}
\end{equation*}
$$

(15) and (16) are the inequalities we need to prove. It is obvious that $f_{0}(z)=$ $-z+2 \log (1+z)$ belongs to J and the inverse of $f_{0}(z)$ attains the equalities. The proof of the theorem is completed.

References

[1] De Branges: A proof of the Bieberbach conjecture. Acta Math., 154, 137-152 (1985).
[2] Ch. Pommerenke: Univalent Functions. Vandenhoeck and Ruprecht, Göttingen (1975).
[3] R. J. Libera and E. J. Zlotkiewicz: Coefficient bounds for the inverse of a function with derivative in \mathscr{P}. Proc. Amer. Math. Soc., 87, 251-257 (1983).

