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1. Introduction. Let M be a bounded domain in R with smooth
boundary OM. Let w be a fixed point in M. By B(s; w) we denote the ball of
center w with radius > O. We remove B(s;w) from M and we put M
M\B(s w). We write B(s; w) = B.

Fix p (1, oo). We put

2 () inf f__ 117u ] dx,(1.1)
X ’Me

where X-- {u H(M) "[lUlIz/,,M)= 1, U-- 0 on OM, u--> 0 in M}.
Then, we know that there exists at least one solution u which attains (1.1).
It satisfies
(1.2) --Au,=X(e) up, in M,

Ovx u, 0 on OB,

u 0 on OM.
Here 0/OVx denotes the exterior normal derivative.

In this paper we prove the following Theorem 1.
Theorem 1. There exists a positive constant C independent of e such that

(1.3) sup sup u,(x) < C,
u,S, xM,

where S is the set of minimizers of (1.1).
The reader may be referred to Ozawa [2],[3], Lin [1] for related prob-

lems.
2. Preliminary lemma. Lemma 2.1. Assume that u C=(M,) is har-

monic in M, and u, 0 for any x OM and that
max{] Ou(x) /OVx x OB( w) } L.

Then, u,(x) C L(1 +log(x-- w /)) for any x M,. Here C is a
positive constant independent of e.

Lemma 2.1 is given in Ozawa [4].
Let G,(x, y) be the Green function of the Laplacian in M, satisfying

AxG,(x, y) 6(x-y) x, y M,,
G(x, y)x 0 y M,,

outGo(x, y)x 0 y M.
Let G(x, y) be the Green function of the Laplacian in M under the Dirichlet
condition on OM. We put

2
(V(x, w),V(w, y)) Za(x w) b(w y)

i=1
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Here w (w1, we) is the standard orthogonal coordinates of w. We put
R(x, y) G(x, y) + 2rrsz(iTG(x, w), iTG(w, y)>.

We put

Gf(x) fM G (x, y)f (y) dy

and

Rf(x) _l.. R(x y)f (y) dy.

We write flIL’(M)as f llq,. We have the following
Lemma 2.2. Fix q > 2. Fix f Lq (Ms).

Then, there exists a constant C > 0 independent of s such that

(2.1) max -x (Rf(x) Gf(x) g C s fllq. 
xOB

holds for v 1- (2/q).
Proo Since (O/Ox)G(x) 0 for x OB, we have to get bound of

(O/O,x)R to prove (2.1). We know that G(x, y) + (2)-loglx-y[
S(x, y) C(M x . By Ozawa [4, (2.9), p. 644] we have

O
R(x)

a
(2.2) aUx x=+(,0) Oxl af(x) awl af(w)

+ 2us < g(x, w), g(Gf) (w)>.

Here f is an extension of f to M which is zero outside M. Therefore, abso-
lute value of the left-hand side of (3.2) does not exceed Cs Gfllcl.()+
O(s) flq,s for q > 2. By the Sobolev embedding theorem applied to Gf we
get (3.1).

Proof of Theorem 1. Assume that q > 2. Let u be the solution of (1.2).
By Lemmas 2.1 and 2.2 we have
(2.3) a u (x)

’ IIq, g + log(I x- wl/s))II
g Ilog Ill

for arbitrary x Ms. We recall that u ll+l,s 1, (s) C.
Let s be an extension of us to M which is defined in the Lemma A in

the appendix of this paper.
Then,

N C’s
By the Sobolev embedding H( ffq(M), we can see that

C’-/+.
We take > + 1. hea, by (2.3) aad (2.4), we et
(2.5) Gsuf (x) Rsu (x) Cs(2/(P+’))-(z/q) log s

NC’<,
for any x M.
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On the other hand, by using the smoothing property of the operator G,
we have for any x M
(2.6) Ru(x)[<-]C,(x)l/ 2 <17gT(x, w),

_< c I1+

2/(P+1)g C(1 + s g
Here denotes the extension of f to M as zero outside M.

From (2.5) and (2.6) we can see thatu(x)] g C for x M by using

u 2(z)Gu. Now our proof of Theorem 1 is complete.
Appendix. Lema . Thee exists au eteusiou operator " HI(M) s u

Eu H ( satisfiu the followiu"
(0) E is liuear.

(x) u (x) M,
hols /o au u H (M).

(2) IIs() c IIs(,) (1 g s g )
hots for an u H (M,) L (M,).

holds foran u H(M) R (M) with2 s < .
Poo Without loss o generality, we may assume that w 0. We take

an arbitrary u Ht(M) and gut
(x) u(x) x M,

u(xlx I-b , (x) x

where U C*(z) satisfies 0 g g 1, i on R/,- 0 on

B,/, and V, g S-’. Notice that both ,(=lxl-b and

&xlx I-b vanish on R B. Then, by using the Kelvin transformation
2 -2

co-ordinates y- e x lxl we have

(x) ISdx u(y) -)s

s _f. lu(u)Idu ( s g ),

where the factor ([ y -) comes from the absolute value of the Jacobian de-
terminant of the Kelvin transformation. We also have

_
v()Id C_ (x Ix I-b I1 (,)(x)Idx

+ C

_
( ix -1)’ (V u) &xlx I-b ,(x)x

By HOlder’s inequality, we see that

U(y) 12ly 1-4 dy C8
-(1+‘2/s,,2

u IILS(M, (2 s < ).

Thus, we prove Lemma A.



70 S. OZAWA and S. ROPPONGI [Vol. 70(A),

[41

References

S. S. Lin: Semilinear elliptic equations on singularly pertubed domains. Comm.
Partial Differential Equations, 16, 617-645 (1991).

S. Ozawa: Singular variation of the ground state eigenvalue for a semilinear
elliptic equation. T6hoku Math. J., 45, 359-368 {1993).
: L boundedness of nonlinear eigenfunction under singular variation of do-
mains (preprint).
: Asymptotic property of an eigenfunction of the Laplacian under singular

variation of domains-The Neumann condition. Osaka J. Math., 22, 639-655
(985).


