23. Algebraic Geometry of Center Curves in the Moduli Space of the Cubic Maps

By Kiyoko Nishizawa*) and Asako NoJiri**)
(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1994)

0. Introduction. In our previous paper [6], we have defined the so-called center curves BC_{p} and CD_{p}, which are algebraic curves, for the real cubic maps. The attached figure 1 gives the graphs of these curves for p $=1,2,3,4$. Note that these graphs exist only in the first and third quadrants. The same holds also for other values $p=5,6, \cdots$.

In the present paper we consider the complex maps. For such a cubic map g, we have two normal forms ; $x^{3}-3 A x \pm \sqrt{B}, A, B \in \mathbf{C}$. Therefore, the complex affine conjugacy class of g can be represented by (A, B). The moduli space, consisting of all affine conjugacy classes of cubic maps, can be identified with the coordinate space $\mathbf{C}^{2}=\{(A, B)\}$. For the post-critically finite complex cubic maps, the center curves $\mathrm{CD}_{p}, \mathrm{BC}_{p}$ can be defined in the same way as in [6]. In section 1 , we show how the equations of these curves are obtained by induction on p.

We can embed \mathbf{C}^{2} canonically in $\mathbf{P}^{2}(\mathbf{C}):(A, B) \rightarrow(1: A: B)$. Then an affine algebraic curve $V_{0}=\left\{(A, B) \in \mathbf{C}^{2}: h(A, B)=0\right\}$ uniquely determines a projective algebraic curve $V=\left\{(C: A: B) \in \mathbf{P}^{2}(\mathbf{C}): H(C: A: B)\right.$ $=0\}$ in $\mathbf{P}^{2}(\mathbf{C})$ such that $h(A, B)=H(1: A: B)$ and $V \cap \mathbf{C}^{2}=V_{0}$.

Definition. For a center curve V_{0}, the corresponding projective algebraic curve V is called the projective center curve. We denote by PBC_{p} and PCD_{p}, these curves corresponding to BC_{p} and CD_{p} respectively.

In sections 2 and 3 , we give some properties of these curves from the viewpoint of algebraic geometry ([1]).

1. The equations of center curves. Let $f(x)=x^{3}-3 A x+\sqrt{B}$, with critical points $\pm \sqrt{A}$.

The equation of curve BC 1 is obtained as follows:

$$
\begin{aligned}
f(\sqrt{A})-(-\sqrt{A}) & =(-2 A+1) \sqrt{A}+\sqrt{B}=0 \\
f(-\sqrt{A})-\sqrt{A} & =(2 A-1) \sqrt{A}+\sqrt{B}=0 .
\end{aligned}
$$

Therefore,

$$
\mathrm{BC} 1: B=A(2 A-1)^{2} .
$$

The equation of curve CD1 is obtained as follows:

$$
\begin{aligned}
f(\sqrt{A})-\sqrt{A} & =(-2 A-1) \sqrt{A}+\sqrt{B}=0, \\
f(-\sqrt{A})-(-\sqrt{A}) & =(2 A+1) \sqrt{A}+\sqrt{B}=0 .
\end{aligned}
$$

[^0]

Fig. 1

Therefore,

$$
\text { CD1 : } B=A(2 A+1)^{2}
$$

The equation of curve BC 2 is obtained as follows:

$$
\begin{aligned}
f^{2}(\sqrt{A})-(-\sqrt{A})= & \left(-8 A^{4}+6 A^{2}+1-6 A B\right) \sqrt{A} \\
& +\left(12 A^{3}-3 A+1+B\right) \sqrt{B}=0 \\
f^{2}(-\sqrt{A})-\sqrt{A}= & \left(8 A^{4}-6 A^{2}-1+6 A B\right) \sqrt{A} \\
& +\left(12 A^{3}-3 A+1+B\right) \sqrt{B}=0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathrm{BC} 2: & B^{3}
\end{aligned} \quad-12 A^{3} B^{2}-6 A B^{2}+2 B^{2}+48 A^{6} B+24 A^{3} B+21 A^{2} B .
$$

The equation of curve CD2 is obtained as follows:

$$
\begin{aligned}
f^{2}(\sqrt{A})-\sqrt{A}= & \left(-8 A^{4}+6 A^{2}-1-6 A B\right) \sqrt{A} \\
& +\left(12 A^{3}-3 A+1+B\right) \sqrt{B}=0 \\
f^{2}(-\sqrt{A})-(-\sqrt{A})= & \left(8 A^{4}-6 A^{2}+1+6 A B\right) \sqrt{A} \\
& +\left(12 A^{3}-3 A+1+B\right) \sqrt{B}=0
\end{aligned}
$$

Thus

$$
B\left(12 A^{3}-3 A+1+B\right)^{2}-A\left(-8 A^{4}+6 A^{2}-1-6 A B\right)^{2}=0
$$

Fixed points can be also considered as periodic points of period 2. So, this curve contains CD1. Dividing the left-hand side of the last equation by the defining polynomial of CD1, we get the equation of CD2 as follows:

$$
\begin{array}{r}
\mathrm{CD} 2: B^{2}-8 A^{3} B+4 A^{2} B-5 A B+2 B+16 A^{6}-16 A^{5} \\
-12 A^{4}+16 A^{3}-4 A+1=0 .
\end{array}
$$

Suppose now,

$$
\begin{aligned}
f^{p}(\sqrt{A}) & =P_{p} \sqrt{A}+Q_{p} \sqrt{B}, \\
f^{p}(-\sqrt{A}) & =-P_{p} \sqrt{A}+Q_{p} \sqrt{B}
\end{aligned}
$$

where P_{p}, Q_{p} are polynomials of A, B. Then we have

$$
\begin{aligned}
& P_{p}=A P_{p-1}^{3}+3 B P_{p-1} Q_{p-1}^{2}-3 A P_{p-1} \\
& Q_{p}=3 A P_{p-1}^{2} Q_{p-1}+B P_{p-1}^{3}-3 A Q_{p-1}+1
\end{aligned}
$$

The equation of curve BC_{p} is obtained as follows:

$$
\begin{aligned}
f^{p}(\sqrt{A})-(-\sqrt{A}) & =\left(P_{p}+1\right) \sqrt{A}+Q_{p} \sqrt{B}=0 \\
f^{p}(-\sqrt{A})-\sqrt{A} & =\left(-P_{p}-1\right) \sqrt{A}+Q_{p} \sqrt{B}=0
\end{aligned}
$$

Therefore,

$$
\mathrm{BC}_{p}:\left(P_{p}+1\right)^{2} A-Q_{p}^{2} B=0
$$

The equation of curve CD_{p} is obtained as follows:

$$
\begin{aligned}
f^{p}(\sqrt{A})-\sqrt{A} & =\left(P_{p}-1\right) \sqrt{A}+Q_{p} \sqrt{B}=0 \\
f^{p}(-\sqrt{A})-(-\sqrt{A}) & =\left(-P_{p}+1\right) \sqrt{A}+Q_{p} \sqrt{B}=0 .
\end{aligned}
$$

Let

$$
\tilde{\phi}_{p}(A, B):=\left(P_{p}-1\right)^{2} A-Q_{p}^{2} B
$$

If $\phi_{q}(A, B)=0$ is the defining equation of CD_{q}, then we have

$$
\tilde{\phi}_{p}(A, B)=\prod_{q \mid p} \phi_{q}(A, B)
$$

Therefore if $\left\{q_{1}, \cdots, q_{n}\right\}$ is the set of all divisors of p except p, then

$$
\mathrm{CD}_{p}: \phi_{p}(A, B)=\tilde{\phi}_{p}(A, B) / \prod_{i=1}^{n} \phi_{q_{i}}(A, B)=0
$$

2. The intersection with the line at infinity. Suppose p is given.
$q_{i}(i=1, \cdots, n)$ will have the same meaning as above. From the preceeding paragraph, we obtain easily the following lemma.

Lemma. (a) Suppose the defining equation $\phi(A, B)$ of $C D_{p}$ is

$$
\begin{equation*}
\phi(A, B)=\phi_{k}(A, B)+\phi_{k-1}(A, B)+\cdots+\phi_{0}(A, B)=0 \tag{1}
\end{equation*}
$$ where $\phi_{i}(A, B)$ is a homogeneous polynomial of degree $i(i=0, \cdots, k)$. Then $\phi_{k}(A, B)=\alpha A^{k}\left(\alpha\right.$ is constant) and $k=3^{p}-\sum_{i=1}^{n} \mu\left(q_{i}\right)$, with $\mu\left(q_{i}\right)$ is the total degree of $C D_{q_{i}}$.

(b) Let now,

$$
\begin{equation*}
\phi(A, B)=\psi_{m}(A) B^{m}+\psi_{m-1}(A) B^{m-1}+\cdots+\psi_{0}(A)=0 \tag{2}
\end{equation*}
$$

Then $\psi_{m}(A)$ is constant and $m=3^{p-1}-\sum_{i=1}^{n} \nu\left(q_{i}\right)$ with $\nu\left(q_{i}\right)$ is the degree of $C D_{q_{i}}$ with respect to B. Moreover, the inequalities $\mu\left(q_{i}\right)>\nu\left(q_{i}\right)$ and $k>m$ are always satisfied.
(c) If we decompose the defining polynomial of $B C_{p}$ like (1), (2), we obtain the highest term $\beta A^{k}(\beta$ is constant $), k=3^{p}$ as the term corresponding to $\phi_{k}(A, B)$ in (1), and constant $\times B^{m}, m=3^{p-1}$ as the term corresponding to $\psi_{m}(A, B) \times B^{m}$ in (2).

We obtain the following theorem from the above lemma.
Theorem 1. Each projective center curve and the line at infinity, $L_{\infty}: C=$ 0 , intersect at the point $(0: 0: 1)$ only. This point $(0: 0: 1)$ is singular andi its multiplicity can be calculated explicitly by the integer p.

Proof. It is sufficient to consider the (C, A) affine part of each projective center curve. Each (C, A) affine part of PCD_{p} and PBC_{p} are, respectively, $C^{d}+\sum_{i=d+1}^{N} \phi_{i}(A, C)$ and $C^{e}+\sum_{i=e+1}^{N} \psi_{i}(A, C)$, where ϕ_{i} and ϕ_{i} are homogeneous polynomials of degree $i, d=2 \cdot 3^{p-1}-\sum_{i=1}^{n}\left(\mu\left(q_{i}\right)-\right.$ $\nu\left(q_{i}\right)$), and $e=2 \cdot 3^{p-1}$. Therefore, for PCD_{p} (resp. $\left.\mathrm{PBC}_{p}\right),(0: 0: 1)$ is singular with multiplicity d (resp. e).

Remark. PCD1 and PBC1 are both cuspidal cubic. Bul for $p \geq 2$, the point $(0: 0: 1)$ is not a "simple cusp", because of the difference between the degree of the highest term containing A and that rf C. For the definition of "simple cusp", see [2]. Morcover, it has only one tangent line L_{∞}.
3. Case $p=1,2$. We get the following theorem about the irreducibility of each projective center curve, which is based on Kaltofen's algorithms on risa-asir (computer algebra system) ([4]).

Theorem 2. Projective center curves $P C D i$ and $P B C i(i=1,2)$ are irreducible.

We obtain the estimate for genus g of each projective center curve Γ, using the following well-known lemma:

Lemma ([3]). Let Γ be an irreducible curve of degree n. Let $\operatorname{Sing} \Gamma=$ $\left\{P_{1}, \cdots, P_{k}\right\}$ be the set of singular points P_{i} of Γ. Let r_{i} be the multiplicity of P_{i}. Then,

$$
g \leq \frac{(n-1)(n-2)}{2}-\sum_{i=1}^{k} \frac{r_{i}\left(r_{i}-1\right)}{2}
$$

Theorem 3. The curves PCD1 and PBC1 are rational. The genus of $P C D 2$ is not greater than 3. The genus of PBC2 is not greater than 9.

Proof. We can express

$$
\mathrm{PCD}_{p}=\mathrm{CD}_{p} \cup\left(L_{\infty} \cap \mathrm{PCD}_{p}\right)=\mathrm{CD}_{p} \cup\{(0: 0: 1)\}
$$

The same decomposition holds for PBC_{p}.
PCD2 is of degree 6 . It has one 4 -fold point $(0: 0: 1)$ and one ordinary double point $(0.25,-0.4375)$. Therefore, $g \leq 3$. PBC2 is of degree 9. It has one 6 -fold point $(0: 0: 1)$ and four ordinary double points as follows:
($-0.1341351918179714,-1.37344484910264$),
($-0.5531033117555605,-0.6288238268413773$),
($0.3436192517867655+0.3041906503790061 * i$, $0.6886343379400248-0.04267412324347224 * i)$,
($0.3436192517867655-0.3041906503790061 * i$,

$$
0.6886343379735695+0.04267412329900053 * i) .
$$

Therefore, $g \leq 9$.
We would like to state the follwing conjecture.
Conjecture for projective center curves. All projective center curves are irreducible. All singular points except $(0: 0: 1)$ are ordinary double points.

References

[1] P. Griffiths and J. Harris: Principles of Algebraic Geometry. John Wiley and Sons (1978).
[2] S. Iitaka, K. Ueno and Y. Namikawa: The Spirit of Descartes and Algebraic Geometry. Nihon-Hyōronsha (1993).
[3] S. Kawai: Algebraic Geometry. Baifükan (1979).
[4] S. Landau: Factoring polynomials over algebraic number fields. SIAM J. Comput., 14, 184-195 (1985).
[5] J. Milnor: Remarks on iterated cubic maps. Preprint \# 1990/6, SUNY Stony Brook.
[6] K. Nishizawa and A. Nojiri: Center curves in the moduli space of the real cubic maps. Proc. Japan Acad., 69A, 179-184 (1993).

[^0]: *) Department of Mathematics, Faculty of Science, Josai University.
 **) Department of Mathematics, Shirayuri Gakuen.

