20. Some Estimates for Eigenvalues of Schrödinger Operators

By Kazuya TACHIZAWA
Mathematical Institute, Tohoku University
(Communicated by Kiyosi ITô, M. J. A., April 12, 1994)

1. Introduction. In this paper we give estimates for large eigenvalues of Schrödinger operators $-\Delta+V$ with increasing potential V. Let $N(\lambda)$ be the number of eigenvalues of the Schrödinger operator less than λ. Under some conditions on V we can prove the asymptotic formula
(1) $N(\lambda) \sim(2 \pi)^{-d}\left|\left\{(\xi, x) \in \mathbf{R}^{d} \times \mathbf{R}^{d}:|\xi|^{2}+V(x)<\lambda\right\}\right|(\lambda \rightarrow \infty)$, which means that there is a correspondence between each eigenvalue less than λ and each set with volume $(2 \pi)^{d}$ in $\left\{(\xi, x) \in \mathbf{R}^{d} \times \mathbf{R}^{d}:|\xi|^{2}+\right.$ $V(x)<\lambda\}$. This correspondence is known as the Bohr-Sommerfeld quantization rule. A lot of people study the conditions on potentials for the formula (1), for instance, Feigin [3], Fleckinger [4], Rozenbljum [5], Simon [6], Tachizawa [7], Titchmarsh [8] and so on.

In this paper we give another formulation of this problem. Let $A=(\mathbf{N}$ $\times \mathbf{Z}) \cup\left\{\left(0,2 n^{\prime}\right): n^{\prime} \in \mathbf{Z}\right\}$ and $B=\left\{(m, n): m=\left(m_{1}, \ldots, m_{d}\right), n=\left(n_{1}\right.\right.$, $\left.\left.\ldots, n_{d}\right),\left(m_{i}, n_{i}\right) \in A, i=1, \ldots, d\right\}$. Our claim is that there is a correspondence between each eigenvalue and each point $(2 \pi m, n)$ for $(m, n) \in B$. Let $\theta_{m, n}=|2 \pi m|^{2}+V(n / 2)$ for $(m, n) \in B$ and $\left\{\mu_{k}\right\}_{k \in \mathbf{N}}$ the rearrangement of $\left\{\theta_{m, n}\right\}_{(m, n) \in B}$ in the nondecreasing order. We show that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\lambda_{k}}{\mu_{k}}=1 \tag{2}
\end{equation*}
$$

under some conditions on V. The formula (2) gives a relation between the asympototic behavior of eigenvalues and the symbol of the Schrödinger operator, which is a new result.

The class of the potentials V studied in this paper contains slowly increasing ones, for example, $V(x)=\log \cdots \log |x|$ (large $|x|)$. The formula (1) is proved in [7] for radial, slowly increasing potentials. But it is not known whether the formula (1) holds or not for non-radial slowly increasing potentials. Our theorem gives a new approach to the study of eigenvalues of Schrödinger operators with slowly increasing potentials.
2. Theorem. We consider potentials $V(x)$ satisfying the following conditions.
(H1) $\quad V \in C^{\infty}\left(\mathbf{R}^{d}\right), V \geq 1, V(x) \rightarrow \infty(|x| \rightarrow \infty)$.
(H2) There are positive constants c, γ such that

$$
V(x+y) \leq c(1+|y|)^{r} V(x) \quad\left(x, y \in \mathbf{R}^{d}\right)
$$

(H3) There is a constant $\tau, 1 / 2 \leq \tau<1$, such that, for every $\alpha=\left(\alpha_{1}, \ldots\right.$, $\left.\alpha_{d}\right) \in \mathbf{Z}_{+}^{d}, 1 \leq|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$,

$$
\left|\partial_{x}^{\alpha} V(x)\right| \leq C_{\alpha} V(x)^{\tau}\left(x \in \mathbf{R}^{d}\right)
$$

where C_{α} is a positive constant depending only on α.

We consider the Schrödinger operator $-\Delta+V$ on $C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$ where $\Delta=$ $\sum_{i=1}^{d} \partial^{2} / \partial x_{i}^{2}$. Let L be the selfadjoint realization of $-\Delta+V$ in $L^{2}\left(\mathbf{R}^{d}\right)$ and $D(L)$ the domain of L. By the condition (H1), L has only discrete spectrum $\lambda_{1}<\lambda_{2} \leq \cdots$ (cf. [2], [8]). We define $\tilde{\theta}_{m, n}=\left\{|2 \pi m|^{2}+V(n / 2)\right\}^{\tau}$ for (m, n) $\in B$ and $\tilde{\mu}_{k}=\tilde{\theta}_{m, n}$ for $\mu_{k}=\theta_{m, n}$.

We have the following theorem.
Theorem 2.1. Suppose that a real valued function V satisfies the conditions (H1), (H2) and (H3). Then there are positive constants C, K such that

$$
\mu_{k}-C \tilde{\mu}_{k} \leq \lambda_{k} \leq \mu_{k}+C \tilde{\mu}_{k}
$$

for all $k \geq K$.
As a corollary of Theorem 2.1, we have the following result.
Corollary 2.1. Under the same assumptions as in the previous theorem, we have

$$
\lim _{k \rightarrow \infty} \frac{\lambda_{k}}{\mu_{k}}=1
$$

3. Outline of the proof of Theorem 1.1. For the proof of Theorem 2.1, we use the Wilson basis. In [1] Daubechies, Jaffard and Journé discovered a function $\phi(t)$ which satisfies the following conditions.
(a) $\phi(t)$ is real, even function in $\delta(\mathbf{R})$ and $\hat{\phi}(s)=(2 \pi)^{-1 / 2}$ $\int_{\mathbf{R}} \phi(t) e^{-i s t} d t=2 \sqrt{\pi} \phi(4 \pi s)$.
(b) There exist $\eta, C>0$ such that $|\phi(t)| \leq C e^{-\eta|t|}$ for all $t \in \mathbf{R}$.
(c) Let $\hat{\phi}_{m, n}(\xi)=c_{m}\left\{\phi(\xi-2 \pi m)+(-1)^{m+n} \phi(\xi+2 \pi m)\right\} e^{-i n \xi / 2}$ for $m \in \mathbf{Z}_{+}, n \in \mathbf{Z}, \xi \in \mathbf{R}$, where $c_{m}=1 / \sqrt{2}$ for $m \geq 1$ and $c_{0}=1 / 2$. Then $\left\{\psi_{m, n}(x)\right\}_{(m, n) \in A}$ is an orthonormal basis in $L^{2}(\mathbf{R})$.

For $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbf{R}^{d}, m=\left(m_{1}, \ldots, m_{d}\right) \in \mathbf{Z}_{+}^{d}, n=\left(n_{1}, \ldots, n_{d}\right) \in$ \mathbf{Z}^{d}, we define

$$
\psi_{m, n}(x)=\psi_{m_{1}, n_{1}}\left(x_{1}\right) \times \cdots \times \psi_{m_{d}, n_{d}}\left(x_{d}\right) .
$$

We can easily prove that $\left\{\psi_{m, n}\right\}_{(m, n) \in B}$ is an orthonormal basis in $L^{2}\left(\mathbf{R}^{d}\right)$. We call $\left\{\psi_{m, n}\right\}_{(m, n) \in B}$ the Wilson basis in $L^{2}\left(\mathbf{R}^{d}\right)$.

We have the following Lemmas.
Lemma 3.1. Suppose that a real valued function V satisfies the conditions (H1), (H2) and (H3). Then there is a positive constant C such that

$$
\begin{aligned}
& \sum_{(m, n) \in B}\left|\left(f, \psi_{m, n}\right)\right|^{2}\left\{\theta_{m, n}-C \tilde{\theta}_{m, n}\right\} \leq(L f, f) \\
& \leq \sum_{(m, n) \in B}\left|\left(f, \psi_{m, n}\right)\right|^{2}\left\{\theta_{m, n}+C \tilde{\theta}_{m, n}\right\}
\end{aligned}
$$

for all $f \in D(L)$ where (\cdot, \cdot) denotes the inner product of $L^{2}\left(\mathbf{R}^{d}\right)$.
Lemma 3.2. Suppose that a real valued function V satisfies the condition (H1). The k-th eigenvalue of the selfadjoint operator L is characterized by the following formulas:

$$
\begin{aligned}
& \lambda_{k}=\sup _{M_{k-1}} \inf \left\{(L u, u): u \in D(L),\|u\|=1, u \perp M_{k-1}\right\} \\
& \lambda_{k}=\inf _{M_{k} \subset D(L)} \sup \left\{(L u, u):\|u\|=1, u \in M_{k}\right\}
\end{aligned}
$$

where M_{k} denotes a k-dimensional subspace of $L^{2}\left(\mathbf{R}^{d}\right)$ and inf and sup are taken over all $k-1$ and k-dimensional subspaces, respectively.

The proof of Lemma 3.2 is given in [9].
For $\mu_{k}=\theta_{m, n}$ we set $\phi_{k}=\phi_{m, n}$. Let M_{k} be the subspace of $L^{2}\left(\mathbf{R}^{d}\right)$ which is spanned by $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$.

By Lemma 3.1, we have

$$
\mu_{k}-C \tilde{\mu}_{k} \leq \inf \left\{(L u, u): u \in D(L),\|u\|=1, u \perp M_{k-1}\right\}
$$

for sufficiently large k.
Hence the first characterization in Lemma 3.2 gives

$$
\mu_{k}-C \tilde{\mu}_{k} \leq \lambda_{k}
$$

for all sufficiently large k.
Similarly we have

$$
\mu_{k}+C \tilde{\mu}_{k} \geq \sup \left\{(L u, u):\|u\|=1, u \in M_{k}\right\}
$$

and we get

$$
\lambda_{k} \leq \mu_{k}+C \tilde{\mu}_{k}
$$

Therefore Theorem 2.1 is proved.
The proof of Lemma 3.1 is given by the following lemma and an elementary calculus.

Lemma 3.3. Suppose that a real valued function V satisfies the conditions (H1), (H2) and (H3). For every $\alpha, \beta \in \mathbf{Z}_{+}$, there exists a constant $C=$ $C(\alpha, \beta)>0$ such that
$\left|\left(L \psi_{m, n}, \psi_{m^{\prime}, n^{\prime}}\right)-\theta_{m, n}\left(\psi_{m, n}, \psi_{m^{\prime}, n^{\prime}}\right)\right| \leq C \frac{\left(\tilde{\theta}_{m, n}, \tilde{\theta}_{m^{\prime}, n^{\prime}}\right)^{1 / 2}}{\left(1+\left|m-m^{\prime}\right|^{2}\right)^{\alpha}\left(1+\left|n-n^{\prime}\right|^{2}\right)^{\beta}}$ for all $m, m^{\prime} \in \mathbf{Z}_{+}^{d}, n, n^{\prime} \in \mathbf{Z}^{d}$.

In the proof of Lemma 3.3 we use the assumptions on V and the ex. ponential decay property of the Wilson basis.

The detail will appear elsewhere.

References

[1] I. Daubechies, S. Jaffard and J-L. Journé: A simple Wilson orthonormal basis with exponential decay. SIAM J. Math. Anal., 22, 554-572 (1991).
[2] D.E. Edmunds and W.D. Evans: Spectral Theory and Differential Operators. Oxford (1987).
[3] V.I. Feigin: Asymptotic distribution of eigenvalues for hypoelliptic systems in R^{2}. Math. USSR-Sb. , 28, 533-552 (1976).
[4] J. Fleckinger: Estimate of the number of eigenvalues for an operator of Schrödinger type. Proc. Roy. Soc. Edinburgh, Sect A, 89, 355-361 (1981).
[5] G.V. Rozenbljum: Asymptotics of the eigenvalues of the Schrödinger operator. Math. USSR-Sb., 22, 349-371 (1974).
[6] B. Simon: Functional Integration and Quantum Physics. Academic Press (1979).
[7] K. Tachizawa: Eigenvalue asymptotics of Schrödinger operators with only dis. crete spectrum. Publ. RIMS Kyoto Univ., 28, 943-981 (1992).
[8] E.C. Titchmarsh: Eigenfunction Expansions associated with Second-order Differential Equations, part 2, Oxford (1958).
[9] A. Weinstein and W. Stenger: Methods of Intermediate Problems for Eigenvalues. Academic Press (1972).

