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1. Introduction. The purpose of this paper is to construct a crepant
resolution of quotient singularities by finite subgroups of SL(3, C) of cer-
tain type, and prove that each Euler number of the minimal model is equal to
the number of conjugacy classes.

The problem of finding a nice resolution of quotient singularities by fi-
nite subgroups of SL(3, C) arose from mathematical physics. In the super-
string theory, the dimension of the space-time is 10, four of them are usual
space and time dimensions, and other six are compactified on a compact
Calabi-Yau space M. From a point of view of algebraic geometry, the
Calabi-Yau space is a smooth three-dimensional complex projective variety
whose canonical bundle is trivial and fundamental group is finite.

In the physics of superstring theory, one considers the string propaga-
tion on a manifold M which is a quotient by a finite subgroup of symmetries
G. By a physical argument of string vacua of M/G, one concludes that the
correct Euler number for the theory should be the "orbifold Euler character-
istic" [3], defined by

1
x(M,G)- ]G Z X

ghfhg

where the summation runs over all pairs of commuting elements of G, and
M<e’h> denotes the common fixed set of g and h. For the physicist’s interest,

we only consider M whose quotient space M/G has trivial canonical bundle.
Conjecture I ([3]). There exists a resolution of singularities M/G s.t.

OOdTG TG, and

x (M/G) x (M, G).
This conjecture follows from its local form [6]:
Conjecture II (local form). Let G SL(3, C) be a finite group. Then

there exists a resolution of singularities a ff-- Ca / G with oo and

X () # {conjugacy class of
In algebraic geometry, the conjecture says that a minimal model of the

quotient space by a finite subgroup of SL(3, C) is non-singular.

Conjecture II was proved for abelian groups by Roan ([18]), and inde-
pendently by Markushevich, Olshanetsky and Perelomov ([11]) by using toric
method. It was also proved for 5 other groups, for which X are hypersur-
faces: (i) WAa+, WB+, WCa where WX/

denotes the positive determinant
part of the Weyl group WX of a root system X by Bertin and Markushevich
([11), (ii) HIs by Markushevich ([10l), and (iii) Io by Roan ([19]).
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In this paper, we prove Conjecture II for solvable groups of certain
type:

Definition. Trihedral group is a finite group G (H, T) c SL(3,C),
where H SL(3, C) is a finite group generated by diagonal matrices and

T= 001
100

Definition. Trihedral singularities are quotient singularities by
trihedral groups.

Definition. A resolution of singularities f: Y--* X of a normal variety
X is crepant if Ky f *Kx.

Theorem 1.1 (Main Theorem). Let X--C3/G be a quotient space by a
trihedral group G. Then there exists a crepant resolution of singularities

f:x,
and

X (’) # {conjugacy class of G}.
Trihedral singularities are 3-dimensional version of Dn-singularities,

and they are non-isolated and many of them are not complete intersections.
Their resolutions are similar to those of Dn-singularities. There is a nice
combination of the toric resolution and Calabi-Yau resolution.

By the way, the conjecture II is true in dimension 2 (i.e., the case of
SL(2, C) (cf. [61)), but in the case of SL(4, C)there exists a counter-
example; in the case of group G- ([-- 1, 1, 1, 1]> (diagonal ma-
trix), which is a finite subgroup of SL(4, C), but there isn’t a crepant re-
solution.

The author would like to express her hearty gratitude to Professor Y.
Kawamata for his valuable advice and encouragement, and to Professors M.
Reid, N. Nakayama and M. Kobayashi for their helpful discussions and en-
couragement..She would also like to thank Professors K-i. Watanabe and T.
Uzawa for useful advices concerning the lists of the groups.

2. Idea for proof. Before the proof of Main Theorem, we recall a
minimal resolution of Dn-singularity in dimension 2. It is a quotient sin-
gularity by a binary dihedral group G generated by

H and
0 8- --10

where exp(2r/-- 1/(2m)) and m rt 2.
Let (u, v) be a coordinate of C. Then the invariant ring under the ac-

tion of G is
C[(uTM ) ,. v,.] +).v uv, u + v u C[x, y, z]/(x-yz+4z

Then we can construct a minimal resolution as follows.
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r /9A2

C C/z= Y /) C/G=X
where Y has a A_-singularity.

(1) At first, we construct a minimal resolution of Y whose exceptional
divisor as follows.

Fig. (2.1)
(2) And the action of e gives an involution.

Fig. (2.2)
(3) So we identify the corresponding two curves. Then we have two

singularities on the quotient of the central curve by 02

Fig. (2.3)
(4) So, we resolve the singularity, then we obtain a resolution of

D-singularity.

Fig. (2.4)
3. Crepant resolution of trihedral singularities G’. Let G’ be the sub-

group of the group G (H, T)consisting of all the diagonal matrices.
Then G’ is a normal subgroup, and an abelian group. We consider the order
of G’.

Proposition 3.1. G’l is one of the following holds.
(1) G’[ 0 (rood 3)
(2) G’I --- 1 (rood 3).
From now, we call the type (f G’ as the following:
Type (I) when G’I --- 1 (mod 3)
Type (II) when G’ 0 (mod 3).
Proposition 3.2. Let X Ca / G, and Y C / G’. Then there exists the
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following diagram"

C C/ C3,= /G=X

where 7r is a resolution of the singularity of Y, and 7 is the induced morphism, v
is a resolution of the singularity by 9Aa, and v is a crepant resolution of the
singularity of X.

Sketch of the proof. As a resolution 7r of Y, we take a toric resolution,
which is also crepant. Then we lift the a-action on Y to its minimal resolu-
tion z and form the quotient z/gAa. This quotient gives in a natural way a

partial resolution of the singularities of X. The minimal resolution X-- Y9./a of the singularities of Y/gAa induces a complete resolution of X.
Under the action of 9Ja, the singularities of Y/a lie in the union of the

image of the exceptional divisor of z under z___ z/9.1 and the locus C"
(x= y= z).

In the resolution Y of Y, the group 9Aa permutes exceptional divisors. So
the fixed points on the exceptional divisors consist of one point or three
points.

Claim I. There exists a toric resolution of Y where 9Aa acts symmetrically on
the exceptional divisors.

Claim II. Let Xs be the corresponding torus embedding, then Xs is
non- singular.

We obtain a crepant resolution 7s’Xs-- Ca/G’.
Claim III. Let F be a fixed locus on z under the action of 01a, then

[ C if G’ is type(I)F C U {2 points} if G" is type (I1)
where C is a strict transform of the fixed locus in Y.

?/a-action in the neighbourhood of a fixed point is analytically isomor-
phic to some linear action.

Claim IV. Let Z C3/-13, then Z () Z (C3, [3 3.
Claim V. The resolution o is a crepant resolution.
Lemma 3.3. Let X "= Ca / ( G’, T), and f f(-- X the crepant resolution

as above. Then the Euler number of is given by
1

Z (frO - ( G k) + 3k

where

1 if G" l (mod 3) (type (I))k
3 ill G’I O(mod3) (type(II))"

Theorem 3.4. X (-’’) # {conjugacy class of G}.
4. Example. In this section, we will see an example.



No. 5] Crepant Resolution of Trihedral Singularities 135

Example. Let G be a group generated by [1,- 1,- 1] and T. Then
the normal subgroup will be G"= ([1, 1,- 1], [- 1, 1, l]>, i.e., G’ is
Type (I).

(1) The dual graph of toric resolution of Y= C/G is one of the fol-
lowing.

(a) Fig. (4.1) (b)
(a) is 923 invariant, while (b) is not. So we take (a).
(2) By the action of 9A on Y, three of the four triangles are permuted,

and there is one triangle corresponding one point which is fixed by 9A3.

:. .&
Fig. (4.2)

(3) By the resolution of the singularities in ]r/gA
3, the central component

is replaced by two Pl-bundle interesting at their sections, whose Euler num-
ber is 3.

,\a/’,

Fig. (4.3)
(4) Eular characteristics of the minimal model.

z(X) =1+3=4.
(5) Conjugacy class of G. There are 4 conjugacy classes"

e, IT], [T], [[,- 1,- ]].
Therefore

,(C3, G) =4.
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