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0. Introduction. The inner amenability of groups is investigated by
many authors e.g., [4]-[8], [15] and [16]. In this paper we shall introduce the
inner amenability for Clifford semigroups and show various necessary and
sufficient conditions for Clifford semigroups to be inner amenable.

Throughout this paper S is a Clifford semigroup, i.e., S is an inverse
semigroup such that the set Es of all idempotent elements in S is contained
in the center Z(S) of S (cf. [9]). For any s S there corresponds a unique
s* S, the inverse of s, such that ss*s s and s*ss*-- s*. Since
ss s s Es

_
Z(S), we can define the inner endomorphism c(s) on S by

c (s) t sts* (t S).
For any space X, let B(X) be the Banach space of all bounded functions

on X with the supremum norm. A mean on X is a positive linear functional
on B(X) such that (1x) 1, where in general 1 r is the characteristic func-
tion of any Y - X. For brevity we write (10 (1f).

For f B(S) and s S we define c(s)f B(s) by c(s)f(a)
f(sas*), a S. A mean on S is said to be inner invariant if (c(s)f)
(f) for any s S and f B(S). A subset V S is said to be inner
invariant if c(s)-V= V for any s S, where c(s)-lv= {a S sas*

V}. S is said to be inner amenable on an inner invariant subset V if there
exists an inner invariant mean on S such that (10 1.

In S we can introduce a congruence relation p by s(p)s2, s, s2 S if
and only if se sze for some e Es (cf. [9]). Then the quotient semigroup

Gs S/p becomes a group. We denote also by p the canonical homomor-
phism of S onto Gs. Then p(s*)= -p(s) s S, Evidently p transforms
the inner endomorphism c(s) to the inner automorphism c(p(s)) on Gs in-
duced by p(s). We set Zs p-(Z(Gs)), where Z(Gs) is the center of Gs.

In the section 1 we establish the relation between the inner amenability
of S and Gs. The section 2 gives various conditions for S to be inner amena-
ble on any inner invariant subset of S, which are derived from author’s
papers [10]-[12] and[13]. Especially we show the fixed point theorem corres-
ponding to the inner amenability of S. In section 3 we give some conditions
for S to be inner amenable on S- Zs, the complement of Zs in S, which are
generalizations of the main result in Paschke [8].

Throughout this paper V is an inner invariant subset of S and W=
p(V), which is also an inner invariant subset of Gs, i.e., W p(s)Wp(s) -1

,)for any s S. We note that p- (W - S is inner invariant for any inner
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invariant W’_ Gs.
1. Amenability of S and Gs. By M(S) [resp. IM(S)] we denote the

space of all means [resp. inner invariant means] on S, and set M(S, A) {
M(S) ;(A) 1} and IM(S,A) --M(S,A) Cl IM(S) for any A- S.

Since Es is a commutative subsemigroup of S, there exists a translation
invariant mean on Es (cf. [1]), i.e., b(he) (h) for any h B(Es) and
e Es, where h(t)--h(te)(t Es). For any f B(S), we define f^
B(S) by f^(s)- (sf), s S, where sf B(Es) is given by sf(e)--
f(se) e Es. Since f ^ (se) f ^ (s) for any s S and e Es by the
translation invariance of b, f^ is consider as a function on Gs. So for any

f B(S) we define pf B(Gs) by pf(p(s)) --f^(s), s S. On the other
*hhand, for any h B(Gs) we define p B(S) by p*h(s)--h(p(s)),

s S. The next is easily seen.
Lemma 1. (1) P(lv) lw and p(c(s) f) c(p(s))pf for f B(S) and

sS.
(2) p*(lw)= Iv and p*(c(p(s))h) c(s)p*h for any h-B(Gs) and
sS.

Let q^ IM(Gs, W) and define b M(S) by q(f) --^(of), f
B(S). Then we see from Lemma 1(1) that q IM(S, V). Conversely for
any IM(S, IO, we define ^ M(Gs) by ^(h) (p*h), h
B(Gs). Then ^ IM(Gs, W). Therefore we have

Theorem 1. S is inner amenable on V if and only if Gs is inner amenable
on W.

The above is analogous to the fact that S is amenable if and only if so is

Gs (cf. [3]). Let E p-l({e}), where e is the identity in Gs. Evidently Gs is
inner amenable on {e} and Z(Gs) respectively. So from Theorem 1 we have

Corollary 1. S is inner amenable on E and Zs respectively.
For any s S we define a map c*(s) on M(S) by c*(s)qb(f)=

*qb(c(s)f), f B(S). Then the map c s a homomorphism of S to the semi-
group of all continuous affine maps on M(S). Moreover we see that c*(s)qb

M(S, IO for any M(S, IO and s S. M(S) and M(S, V) are,
w -compact convex subsets of the dual space B(S)*. From these facts and
Day’s fixed point theorem (cf. [1], [2]) we have

Theorem 2. If S is amenable, then S is inner amenable on V.
Let IM(S) and a (1O. We suppose 0 < a < i and define the

means t and . on S by (f)= o-(1vf) and Ce(f)= (1- a) -qb(ls_vf), f B(S), respectively. Then IM(S, IO and IM(S, S
V). So we have
Theorem 3. Let IM(S) and a (I0. Then S is inner amenable on

V [resp. S- V] if a > 0 [resp. a < 11.
From Corollary 1 and the proof ofTheorem 3, we see that every q5

IM(S) is expressed in the convex linear combination of q IM(S, Zs) and
IM(S, S- Zs).
2. Characterizations of inner amenability. In order to state the main

theorem we begin with some notations. For any p [1, oo), let L(S) be the
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usual Banach space of functions on S with respect to the counting measure
on S. We set:
Mp(S) {h Lp(S) h

_
0 and h II 1}, F(S) {h M(S) supp(h)

is finite}, and for any A --- S,
L(S, A) {h Lp(S) supp (h)

_
A}, M(S, A) L(S, A) V M(S),

F (S, A) U(S, A) f F(S).
Every h M(S) is identified with a mean on S defined by h(f)-
,{h(s)f(s);s S}. So M(S)[resp. M(S, A)] is regarded as a subset of
M(S)[resp. M(S, A)]. We note that F(S)[resp. F(S,A)] is weakly
dense in M(S)[resp. M(S, A)].

For s S we put R(s) {a S ss*a s*sa a}. Since ss*, s*s
Es

_
Z(S), R(s) is an ideal of S and R(s)"-c(s)S--c(s)R(s). c(s)

and c(s*) are bijective on R(s) and c(s*) c(s) - on R(s). Let P(S) be
the family of all finite subsets of S. For K P(S) we set R(K)--
{R(s) ;s K}, which is also an ideal of S. We see that p(R(K)) Gs and
that (V R(K)) 1 for any M(S, V) such that c*(s) for all s
K.

Let us fix p [1, c). For s S we define an linear operator c(s) on

Lp(S) by c(s)h(a) h(s*as) if a R(s) and c(s)h(a) 0 if a
R(s) for h L(S). Then c(s)h-" c*(s)h for h M(S, R(s)), and c(s)
induces an isometry on Lp(S, R(s)). Moreover we see that c(s)c(t)=
c(st) for s, t S from the relation R(st) R(s) R(t).

Now we consider the following condition (P)" For any K P(S) and

> 0 there exists h Fp (S, R(K)) such that c (s)h- h < fo az s K.
By the same method as in [14] we see that (P) <= (P)q for any p, q [1, co).
Under these notations, the next theorem is derived from author’s papers [10],
[11] and [13].

Theorem 4. The following conditions are mutually equivalent.
(1) S is inner amenable on V.
(2) There exists a net {Ca} in F(S, V) such that

w -lim (c* (s) ) 0 for any s S.
(3) There exists a net {Ca} in F (S, V) such that

lim c <s)o o 0 s S.
(4) (P) holds.
(5) (P) holds for some p (1, oo).
(6) For any K P(S) and > 0 there exists a finite subset A - S such that

d sAs* sAs* A < e d for all s e K,
where B denotes the cardinality of any finite set B.

We show the fixed point property corresponding to the inner amenability
of S. A compact affine conjugate action of S is a quadruplet {Q, T, r, v} with
the following properties (a)-(c):

(a) Q is a compact convex subset of a locally convex topological linear space T,
(b) ff is a homomorphism of S to the semigroup of all continuous affine maps

O Q,
(c) v is a map of S to Q such that r(sts*) r(s)v(t) for any s t
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We define a map 6 of S to M(S) by 8(s)f=f(s)(s S, f B(S)). Then
we see that c (s)8(t)(f)=f(sts*)= 8(sts*)f for any s, t S and f
B(S). So {M(S), B(S)*, c*, 6} is a compact affine conjugate action of
S. We denote by Co(A) the convex hull of any subset A of a linear space.

Theorem 5. The following conditions are equivalent.
(1) S is inner amenable on V.
(2) For any given compact affine conjugate action {Q, T, 7r, z’} of S, there ex-

ists a point p in the closure of Co({z’(s) s V}) such that rc(s)p 10 for all s
S.

Sketch of proof Let IM(S, V). We note that is in the w*-closure
of Co({O(s); s V}). According to Lemma 2.1 in [12], any compact affine
conjugate action {Q, T, r, v} of S induces a continuous affine map v of
M(S) to Q such that v^((s))= v(s) for any s S and z- (c (s))=

^ ^7r(s)v (b) for any (s, b) S x M(S). So p v () is the desired point
in the closure of Co({v(s) s V}). Conversely suppose (2). Applying (2) to
the compact affine conjugate action {M(S), B(S)* *c c3} of S, we get an in-
ner invariant mean in M(S, V).

3. Inner amenability on S- Zs. As noted in Corollary 1, S is inner
amenable on Zs. In this section let us show some conditions for S to be inner

amenable on S- Zs. For brevity we write G Gs and Z Z(Gs). By vir-
tue of Theorem 1, it suffices to consider the conditions for G to be inner
amenable on G- Z instead of the inner amenability of S on S- Zs. Let
H(G) be the C*-algebra of all bounded linear operators on the Hilbert space
L.(G) and C*(c2, G) be the C*-subalgebra of H(G) generated by the uni-
tary operators c2(g), g G, on Le(G), where c.(g)h(a)--h(g-lag), a
G, h L(G). We define Pz H(G) by Pzh lzh, h L(G). Let us fix
a point w in Z and put w lCw e L2(G). The next theorem is a generaliza-
tion of the main result in Paschke [8].

Theorem 6. The following conditions are mutually equivalent.
(1) S is inner amenable on S Zs, i.e., G is inner amenable on G Z.
(2) Pz is not contained in C* (c, G).
(3) There exists a state co on H(G) such that w(Pz) "-0 and co(c.(g)) 1
for all g G.

Sketch of proof Suppose (1). Since G is inner amenable both on G- Z
and Z, it follows from Proposition 4.7 in [6] that IIPz- TII - 1/2 for any
T C*(c., G). So (1) implies (2). We note that Pzc.(g) c.(g)Pz Pz for
any g G and PzT TPz < Tw, w > Pz for any T C*(c, G). So it

follows from (2) that the direct sum C*(c., Pz, G) of C*(c., G) and the
1 dimensional algebra generated by Pz becomes also a subalgebra of
H(G). Let us define a state on C*(c2, Pz, G) by (T + cPz) (Tw, w),
T C*(c, G), c C. Then (Pz) 0 and (c2(g)) 1 for any g G.
Hence any extending state co on H(G) of satisfies (3). Finally let co be a

state on H(G) as in (3). Then by the unitarity of c.(g), co(c.(g)T)=
co(Tc.(g)) co(T) for anyg Gand T H(G). For anyf B(G) we de-

fine m(f) H(G) by m(f)h j’h, h L.(G), and define M(G) by
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cp(f) co(re(f)), f B(G). Since m(c(g) f) c.(g)-m(f)cz(g), we have
cp(c(g)f) og(cz(g)-m(f)c.(g)) co(f) for any g G and f B(G),

and (Z) (o(m(lz)) (o(Pz) = O. Therefore b IM(S, V).
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