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(Communicated by Kiyosi IT0, M. J. A., May 12, 1994)

1. Introduction and the main result. Let us review some definitions
and properties of the complex arithmetic-geometric mean. Let a and b be two
complex numbers satisfying
(A) ab == O, a +__ b =/= O.
A sequence {(an bn)} (n = 0,1,...) is called an agm-sequence for (a, b) if
it satisfies the algorithm,

ao a, bo b
an_ "{" bn_

a. 2 b. (an-lb.-i)
i/z n= 1,2,...

Since there are two possible values of bn at each step of the algorithm,
there are infititely many such agm-sequences for fixed (a, b). We call (an,
bn) (n >_ 1) of an agm-sequence the right choice, if

Re (b-a-.) >0or Re (b-n)= 0, Im (b-a-.) > 0.

Note that a. and b. also satisfy (A) and that one of (an, bn) and (a., bn)
is always the right choice, while the other is not.

For any agm-sequence {(an, b.)} one can prove that both sequences
{an} and {bn} converge to the same limit. For "most" of the agm-sequences,
however, their limits turn out to be 0. More precisely, for any agm-sequence,
its limit r lim an lim bn exists. And e :/: 0 if and only if (an, bn) is the
right choice for all but finitely many n >_ 1. An agm-sequence satisfying this
condition will be called a good one. Let 992(a, b)denote the set of all the
non-zero limits of good agm-sequences for (a, b). The simplest mean of
(a, b), denoted by M(a, b), is defined as the limit of {an} of such
agm-sequence {(an, bn)} for (a, b) that (an, bn) is the right choice for all
n _> 1. Naturally we have M(a, b) 93(a, b).

Now a question is raised as to the correspondence between an
agm-sequence and its limit. We ask whether the correspondence is one-
to-one or not. Our question will be of any interest only for the class of good
agm-sequences.. If "bad" agm-sequences were included, there would be no

one-to-one correspondence, since such a sequence has always 0 as its lmit,
no matter how it makes various choices. The following theorem answers the
above question.

Theorem 1. Let a and b satisfy the condition (A). Suppose that two
agm-sequences { (a., bn)} and { (a’, b)} for (a, b) are good ones so that they
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have their limits lim an and ’= lim an in (a, b). If ’, then the
two agm-sequences are equal, namely

(a,, b,) (a’, b) for all n >_ O.
In this paper an outline of the proof of Theorem 1 will be given. In the

process we will need the result, as well as the proof, of the following
theorem.

Theorem 2. Let a and b satisfy the condition (A) and la[ >-- b I. Then a

complex number : belongs to J(a, b) if and only if
1 p q

(1) M(a, b) + i M(a + b, a- b)’
where p and q are arbitrary relatively prime integers satisfying

p= lmod4 and q O mod 4.
Theorem 2, or at least part of it, was already conceived by Gauss,

although he never gave an exact statement as above. Different proofs of the
theorem were given by several authors (e.g. Geppert [2], Cox[I] and Nishiwa-
da [3, 4]). Since the proofs in [1] and [2] rely heavily on some theta identities
and seem unsuitable for our purpose, we prefer to follow the arguments
given in [3, 4].

would like to thank Prof. Masaaki Yoshida for informing me of some
facts related to the injectivity of the map (3).

2. Analytic continuation of M(1, z). Due to the homogeneity of M(a, b)
and ff)(a, b), we may put a 1, b z. Assumption (A) reads now as

zCo’=C\{O, +I}.
An agm-sequence for (1, z)can be written as {(an(z), bn(z))}, where

an(z), bn(z)are (multi-valued) holomorphic functions in Co. Furthermore,
their limit v(z)= liman(z)= lira bn (z) defines a germ of a holomorphic
function. The following proposition states that all the values v(z) ffJ(1, z)
are actually branches of a single holomorphic function, for instance of M(1, z).

Proposition 3 ([3, 41). Let {(an(Zo), bn(zo))} be an agm-sequence for (1,
Zo), Zo Co. Suppose that there is a number N (>-2)such that (an(Zo),
bn(zo)) is the right choice for every n >-- N. Then there exists a point z Co
and a curve T in Co joining zo with z such that ((’) .an(zl), (’) .bn (z) ) is the
right choice for every n >_ N- 1. Here (’). denotes the analytic continuation
along the curve T.

Let us now study those values which are attained by analytic continua-
tion of M(1, z)along various cycles of the fundamental group rl(C0, z).
Note that this is a free group generated by three cycles ?’-1, 7"o and ’1, which
are defined by some positively oriented Jordan curves through z respectively
surrounding 1,0 and 1.

Both M(1, z) -1
and M(1 + z, 1 z) -1

have integral expressions on the
elliptic curve, y x(1 x)(1 + (z2 1)x), as follows,

1 l foldX i l fo-dxM(1, z) - y M(14-, l-z) rc y
Using these expressions one can compute circuit matrices of (M(1, z) -,
iM(1 -b z, 1 z) -1) along the cycles 7-1, T0 and 71. We get
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(2) a(r) v a(ro)= u- /’(’-1) UVU-1,
where

(1 2) (1 0)U=
0 1

andV=
2 1

The relations (2) induce the homomorphism
(3) / rrl(C o, z)---, F : SL(2, Z),
where F is the subgroup of SL(2, Z)generated by V, U- and UVU-.
Then the circuit matrix of (M(1, z) -, iM(1 + z, 1- z) -) along an arbi-
trary cycle 7 (Co, z) is given by the image (7) of the above map (3).

A standard discussion on modular groups can prove that

F(4)’= {( q)- SL(2 Z)’pslmod4, q0mod4, r0mod2}.-F=
S

This shows in particular that for any closed curve 7 in Co starting at z,
(4) (7).M(1, z) - pM(1, z) - + iqM(1 + z, 1 z) -,
where , q) is the first row of the matrix N(7). Theorem 2 is an immediate
consequence of the above equality (4).

3. Outline of the proof of Theorem 1. We may assume that a 1,
b zo in Theorem 1. Consider two agm-sequences {(a,(Zo), b,(zo))} and
{ (a(Zo), b(zo)) } and their respective limits r (zo) and % (Zo), both belong-
ing to (1, Zo). Our proof can be divided into several steps.

Step 1. Our assumption that r(zo) z(Zo) implies that they actually
coincide as germs of holomorphic functions, namely r(z) %(z) near zo.
This can be proved if one notices that M(1, z) -1

and M(1 + z, 1 z) - are

linearly independent as different periods of an elliptic curve and therefore
that the numbers p and q corresponding to z(Zo) in (1) are equal to those
corresponding to %(Zo).

Step 2. Prop. 3 allows us to find a closed curve O in Co through zo,

such that the analytic continuation along O brings both r(z) and its defin-
ing agm-sequcnce {(an(z), bn(z))} to M(1, z) and its agm-sequence consist-
ing only of the right choices. Similarly we can find a closed curve O for
%(z) and its agm-sequence.

-1Step 3. Now the analytic continuation (pp). keeps M(1, z)
invariant, while its defining agm-sequence might be changed. Its correspond-
ing circuit matrix (pp2) by the map (3) must be of the form

Since the map is injective and g(r) V, it follows that 001- r as ele-
ments of (Co, Zo).

Step 4. One can prove that M(1, z) and all the rightly chosen compo-
nent functions of its agm-sequence have the point i as their removable sin-
gularity. Therefore the action of (r) , does not change these functions. It fol-
lows then that the actions (O), and (p2), on the agm-sequence defining
M(1, z) bring about the same agm-sequence; namely we have

( (a. (Zo), b. (Zo))) ( (a: (Zo), b: (Zo))).
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