45. A Space of Siegel Modular Forms Closed under the Action of Hecke Operators

By Yoshiyuki Kitaoka
Department of Mathematics, School of Science, Nagoya University (Communicated by Shokichi IYanAGA, M. J. A., June 7, 1994)

In this note, we show that a space of Siegel modular forms whose Fourier coefficients are genus-invariant, is closed under the action of Hecke operators.

Let n be a natural number. We denote the ring of integers by \boldsymbol{Z}, the identity matrix of size n by 1_{n} and the ring of integral square matrices of size n by $M_{n}(\boldsymbol{Z})$. For matrices $A, B, A[B]$ denotes ${ }^{t} B A B$ if it is well defined. The Siegel upper half space H_{n} denotes the set of symmetric complex matrices of degree n with positive definite imaginary part. $e(x)$ means $\exp (2 \pi i x)$ and $\sigma(T)$ denotes the trace of a matrix T.

The definitions of Siegel modular forms, Hecke rings and their action to modular forms are the ordinary ones (see §3.2 in [1]). By using the notation there, our aim is to show the following

Theorem. Let n, k, q be positive integers and denote by $\mathfrak{M}_{k}^{n}(q, \chi)$ the space of Siegel modular forms of degree n, weight k, level q, and Dirichlet character χ modulo q. Put $G_{k}^{n}(q, \chi):=\left\{F(z)=\sum a(T) e(\sigma(T z)) \in \mathfrak{M}_{k}^{n}(q, \chi) \mid\right.$ $a(T)$ depends only on the genus of T if T is positive definite . Then $G_{k}^{n}(q, \chi)$ is closed under the action of the Hecke ring \mathbf{L}_{p}^{n} for any prime number p relatively prime to q.

Remark. The space $G_{k}^{n}(q, \chi)$ may be a good one in the sense that it is closed under the Hecke ring. We can give Eisenstein series as examples of Siegel modular forms whose Fourier coefficients are genus-invariant. Another non-trivial example is the Maass space M_{k} of degree 2 and weight k. If the spaces M_{k} and $G_{k}^{2}(1,1)$ coincide (this is true when $k=10$, for example), then it gives a new characterization of the Maass space and it is surprising that the property of being genus-invariant yields the much stronger property. If they are not the same, then it may be worth studying modular forms in $G_{k}^{2}(1,1) \backslash M_{k}$ in detail.

The theorem is an immediate corollary of the proposition which is given later, by using the result in $\S 3.2$ in [1]. Let us give the notion and definition.

Put

$$
S p(n, \boldsymbol{Z}):=\left\{\left.M \in M_{2 n}(\boldsymbol{Z})\right|^{t} M J_{n} M=J_{n}\right\}
$$

where $J_{n}:=\left(\begin{array}{cc}0 & 1_{n} \\ -1_{n} & 0\end{array}\right)$ and

$$
\Gamma_{0}:=\left\{\left.\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right) \in S p(n, Z) \right\rvert\, \operatorname{det} A=1\right\} .
$$

Let $F(z):=\sum a(T) e(\sigma(T z))$ be a function on H_{n} where T runs over the set of rational symmetric matrices of size n, and suppose that it satisfies the the following conditions:
(1) if $a(T) \neq 0$, then T is half-integral and positive semi-definite,

$$
F\left((A z+B) D^{-1}\right)=F(z) \text { for every }\left(\begin{array}{cc}
A & B \tag{2}\\
0 & D
\end{array}\right) \in \Gamma_{0} .
$$

Clearly we have

$$
\begin{equation*}
a(T[U])=a(T) \text { for } U \in S L_{n}(\boldsymbol{Z}) \tag{3}
\end{equation*}
$$

We take an integral matrix $M=\left(\begin{array}{cc}A & B \\ 0 & D\end{array}\right)$ which satisfies

$$
{ }^{t} M J_{n} M=p^{\delta} J_{n}
$$

where p is a prime number and δ is a natural number. We will fix them hereafter. Let

$$
\Gamma_{0} M \Gamma_{0}=\bigsqcup_{i} \Gamma_{0}\left(\begin{array}{cc}
A_{i} & B_{i} \tag{4}\\
0 & D_{i}
\end{array}\right)
$$

be a disjoint coset decomposition, and put

$$
\left(\left.F\right|^{\prime} \Gamma_{0} M \Gamma_{0}\right)(z):=\sum_{i} F\left(\left(A_{i} z+B_{i}\right) D_{i}^{-1}\right)
$$

Proposition. Suppose that a function $F(z):=\sum a(T) e(\sigma(T z))$ on H_{n} satisfy the conditions (1), (2). If the value $a(T)$ depends only on the genus of T for every positive definite matrix T, then the same property holds for the Fourier coefficents $a_{M}(T)$ of $\left(\left.F\right|^{\prime} \Gamma_{0} M \Gamma_{0}\right)(z)$.

Proof. Let us prove the proposition in the rest.
Lemma 1. Putting

$$
\left(\left.F\right|^{\prime} \Gamma_{0} M \Gamma_{0}\right)(z):=\sum_{T} a_{M}(T) e(\sigma(T z))
$$

and

$$
\left(\begin{array}{cc}
A_{i} & B_{i} \\
0 & D_{i}
\end{array}\right)=\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
U_{i} & U_{i} S_{i} \\
0 & { }^{t} U_{i}^{-1}
\end{array}\right)
$$

for $U_{i} \in S L_{n}(\boldsymbol{Z}), S_{i}={ }^{t} S_{i} \in M_{n}(\boldsymbol{Z})$, we have

$$
\begin{equation*}
a_{M}(T)=\sum_{i} a\left(p^{\delta} T\left[\left(A U_{i}\right)^{-1}\right]\right) e\left(\sigma\left(T S_{i}\right)\right) e\left(\sigma\left(T\left[U_{i}^{-1}\right] A^{-1} B\right)\right) \tag{5}
\end{equation*}
$$

Proof. First we note ${ }^{t} A D={ }^{t} A_{i} D_{i}=p^{\delta} 1_{n}$. It is easy to see, $\left(\left.F\right|^{\prime} \Gamma_{0} M \Gamma_{0}\right)$ (z) is equal to

$$
\begin{aligned}
& \sum_{i} \sum_{T} a(T) e\left(\sigma\left(T\left(A_{i} z+B_{i}\right) D_{i}^{-1}\right)\right) \\
= & \sum_{i, T} a(T) e\left(\sigma\left(T B_{i} D_{i}^{-1}\right)\right) e\left(\sigma\left(D_{i}^{-1} T A_{i} z\right)\right)
\end{aligned}
$$

here by putting $\tilde{T}:=D_{i}^{-1} T A_{i}=p^{-\delta t} A_{i} T A_{i}$,

$$
=\sum_{i, \tilde{T}} a\left(D_{i} \tilde{T} A_{i}^{-1}\right) e\left(\sigma\left(D_{i} \tilde{T} A_{i}^{-1} B_{i} D_{i}^{-1}\right)\right) e(\sigma(\tilde{T} z))
$$

Hence we have

$$
=\sum_{i, \tilde{T}} a\left(D_{i} \tilde{T} A_{i}^{-1}\right) e\left(\sigma\left(\tilde{T} A_{i}^{-1} B_{i}\right)\right) e(\sigma(\tilde{T} z)) .
$$

$$
\begin{aligned}
a_{M}(T) & =\sum_{i} a\left(D_{i} T A_{i}^{-1}\right) e\left(\sigma\left(T A_{i}^{-1} B_{i}\right)\right) \\
& =\sum_{i} a\left(D^{t} U_{i}^{-1} T\left(A U_{i}\right)^{-1}\right) e\left(\sigma\left(T\left(A U_{i}\right)^{-1}\left(A U_{i} S_{i}+B^{t} U_{i}^{-1}\right)\right)\right) \\
& =\sum_{i} a\left(D T\left[U_{i}^{-1}\right] A^{-1}\right) e\left(\sigma\left(T S_{i}\right)\right) e\left(\sigma\left(T\left[U_{i}^{-1}\right] A^{-1} B\right)\right) \\
& =\sum_{i} a\left(p^{\delta} T\left[\left(A U_{i}\right)^{-1}\right]\right) e\left(\sigma\left(T S_{i}\right)\right) e\left(\sigma\left(T\left[U_{i}^{-1}\right] A^{-1} B\right)\right) .
\end{aligned}
$$

By the condition (1) and Lemma $1, a_{M}(T) \neq 0$ implies that $\bar{T}:=$ $p^{\delta} T\left[\left(A U_{i}\right)^{-1}\right]$ is positive semi-definite and half-integral for some index i. Hence $T=p^{-\delta} \bar{T}\left[A U_{i}\right]$ is positive semi-definite and $2 p^{\delta} T$ is an integral matrix. Therefore to prove the proposition, we can confine ourselves to the case that T is a positive definite rational matrix such that
$2 p^{\delta} T$ is integral and positive definite.
We take a positive definite matrix T_{1} in the genus of T, that is for every prime number q there is a matrix $V_{q} \in S L_{n}\left(\boldsymbol{Z}_{q}\right)$ so that

$$
T_{1} \stackrel{q}{=} T\left[V_{q}\right]
$$

To prove the proposition and hence the theorem, we have only to show $a_{M}(T)=a_{M}\left(T_{1}\right)$. We note that $2 p^{\delta} T_{1}$ is also integral and $\operatorname{det} T_{1}=\operatorname{det} T$. We can choose a matrix $V \in S L_{n}(\boldsymbol{Z})$ so that

$$
\begin{equation*}
V \equiv V_{q} \bmod (2 p)^{r} \boldsymbol{Z}_{q} \text { for } q=2 \text { and } p \tag{6}
\end{equation*}
$$

where r is a sufficiently large integer.
Lemma 2. Putting $T_{2}:=T[V]$, we have for every i

$$
\begin{align*}
e\left(\sigma\left(T_{1}\left[\left(U_{i} V\right)^{-1}\right] A^{-1} B\right)\right) & =e\left(\sigma\left(T_{2}\left[\left(U_{i} V^{-1}\right] A^{-1} B\right)\right),\right. \tag{7}\\
\left.e\left(\sigma\left(T_{1} S_{i}{ }^{t} V^{-1}\right]\right)\right) & \left.=e\left(\sigma\left(T_{2} S_{i}{ }^{t} V^{-1} V^{-1}\right]\right)\right) . \tag{8}
\end{align*}
$$

Moreover, for $T_{j}^{\prime}:=T_{j}\left[\left(A U_{i} V^{-1}\right](j=1,2)\right.$,
T_{1}^{\prime} and T_{2}^{\prime} are in the same genus for any i.
Proof. Because of the condition (6), we have $V_{q}^{-1} V \equiv 1_{n} \bmod (2 p)^{r} \boldsymbol{Z}_{q}$ for $q=2$ and p. Then $T_{2}=T[V]=T_{1}\left[V_{q}^{-1} V\right]$ implies $2 p^{\delta} T_{1} \equiv 2 p^{\delta} T_{2} \bmod (2 p)^{r} \boldsymbol{Z}_{q}$ because of the integrality of $2 p^{\delta} T$, and hence
(10) $\quad T_{1} \equiv T_{2} \bmod (2 p)^{r-\delta} \boldsymbol{Z}$.

On the other hand, ${ }^{t} A D=p^{\delta} 1_{n}$ yields that $p^{\delta} A^{-1}$ is an integral matrix. Therefore $\left(T_{1}-T_{2}\right)\left[\left(U_{i} V\right)^{-1}\right]\left(p^{\delta} A^{-1}\right) B \equiv 0 \bmod (2 p)^{r-\delta} \boldsymbol{Z}$ follows, and if $r \geq 2 \delta$, then the assertion (7) holds.

The condition (10) also implies (8).
Finally let us prove the assertion (9). Let q be a prime different from $2, p$. Since we have $T_{2}^{\prime}=T_{2}\left[\left(A U_{i} V\right)^{-1}\right]=T_{1}\left[V_{q}^{-1} V\right]\left[\left(A U_{i} V\right)^{-1}\right]=T_{1}\left[V_{q}^{-1}\left(A U_{i}\right)^{-1}\right]$ $=T_{1}^{\prime}\left[A U_{i} V V_{q}^{-1}\left(A U_{i}\right)^{-1}\right]$, the fact that A is in $G L_{n}\left(\boldsymbol{Z}_{q}\right)$ for a prime $q \neq 2$, p implies that $T_{2}^{\prime}=T_{1}^{\prime}\left[W_{q}\right]$ for some $W_{q} \in S L_{n}\left(\boldsymbol{Z}_{q}\right)$.

Suppose $q=2$ or p. By virtue of (10), the integrality of $p^{\delta} A^{-1}$ implies $T_{1}\left[p^{\delta}\left(A U_{i} V\right)^{-1}\right] \equiv T_{2}\left[p^{\delta}\left(A U_{i} V\right)^{-1}\right] \bmod (2 p)^{r-\delta}$ and hence $T_{1}^{\prime} \equiv T_{2}^{\prime} \bmod (2 p)^{r-2 \delta}$. Since $\left(\operatorname{det}\left(2 p^{\delta} T\right)\right)\left(T_{j}\right)^{-1}=2 p^{\delta} \operatorname{det}\left(2 p^{\delta} T_{j}\right)\left(2 p^{\delta} T_{j}\right)^{-1}\left[{ }^{t}\left(A U_{i} V\right)\right]$ is integral, we can conclude, using Corollary 5.4.4 in [2] that there is a matrix $W_{q} \in$ $G L_{n}\left(\boldsymbol{Z}_{q}\right)$ such that $T_{2}^{\prime}=T_{1}^{\prime}\left[W_{q}\right]$ if r is sufficiently large. Thus we have shown that there is a matrix $W_{q} \in G L_{n}\left(\boldsymbol{Z}_{q}\right)$ such that $T_{2}^{\prime}=T_{1}^{\prime}\left[W_{q}\right]$ for any prime q. This implies that T_{1}^{\prime} and T_{2}^{\prime} are in the same genus.

Since

$$
\begin{aligned}
\Gamma_{0} M \Gamma_{0} & =\bigsqcup \Gamma_{0} M\left(\begin{array}{cc}
U_{i} & U_{i} S_{i} \\
0 & { }^{t} U_{i}^{-1}
\end{array}\right) \\
& =\bigsqcup \Gamma_{0} M\left(\begin{array}{cc}
U_{i} & U_{i} S_{i} \\
0 & { }^{t} U_{i}^{-1}
\end{array}\right)\left(\begin{array}{cc}
V & 0 \\
0 & { }^{t} V^{-1}
\end{array}\right)
\end{aligned}
$$

$$
=\bigsqcup \Gamma_{0} M\left(\begin{array}{cc}
U_{i} V & \left.U_{i} V S_{i}{ }^{t} V^{-1}\right] \\
0 & { }^{t}\left(U_{i} V\right)^{-1}
\end{array}\right),
$$

(5) implies

$$
\begin{aligned}
& a_{M}(T)=\left.a_{M}\left(T_{2}\right)=\sum_{i} a\left(p^{\delta} T_{2}\left[\left(A U_{i} V\right)^{-1}\right]\right) e\left(\sigma\left(T_{2} S_{i}{ }^{t}{ }^{t} V^{-1}\right]\right)\right) \\
& e\left(\sigma\left(T_{2}\left[\left(U_{i} V V^{-1}\right] A^{-1} B\right)\right)\right. \\
&=\left.\sum_{i} a\left(p^{\delta} T_{2}\left[\left(A U_{i} V\right)^{-1}\right]\right) e\left(\sigma\left(T_{1} S_{i}{ }^{t} V^{-1}\right]\right)\right) e\left(\sigma\left(T_{1}\left[\left(U_{i} V\right)^{-1}\right] A^{-1} B\right)\right),
\end{aligned}
$$

using (7) and (8). By the assumption that Fourier coefficients are genus-invariant, the assertion (9) implies $a\left(p^{\delta} T_{1}\left[\left(A U_{i} V\right)^{-1}\right]\right)=$ $a\left(p^{\delta} T_{2}\left[\left(A U_{i} V\right)^{-1}\right]\right)$ and hence $a_{M}(T)=a_{M}\left(T_{2}\right)=a_{M}\left(T_{1}\right)$. Thus we have completed the proof of the proposition and hence the theorem.

References

[1] A. N. Andrianov: The multiplicative arithmetric of Siegel modular forms. Russian Math. Survays, 34, 75-148 (1979).
[2] Y. Kitaoka: Arithmetic of Quadratic Forms. Cambridge University Press (1993).

