38. Index for Factors Generated by Direct Sums of II_{1} Factors

By Atsushi Sakuramoto
Department of Mathematics, Faculty of Science, Kyoto University
(Communicated by Kiyosi ITÔ, M. J. A., June 7, 1994)

In this paper, we give an index formula for II_{1} factors generated by increasing sequences of infinite dimensional algebras and some examples of such factors. The theory in case of finite dimensional algebras was constructed by H. Wenzl.
§1. Preliminaries. Let $M=\bigoplus_{j=1}^{m} M_{j}$ be a finite direct sum of II_{1} factors and q_{j} the minimal central projection corresponding to M_{j}. Since the normalized normal trace on a II_{1} factor is unique, a trace on M (denoted by $t r)$ is decided by a numerical vector $\vec{s}=\left(\operatorname{tr}\left(q_{i}\right)\right)_{i=1, \cdots, m}$, called the trace vector of M. Let $N=\bigoplus_{i=1}^{n} N_{i} \subset M$ be an another finite direct sum of II_{1} factors and p_{i} the corresponding minimal central projection. We assume that the trace on N is the restriction of the trace on M, and denote by \vec{l} the trace vector of N.

We define two matrices relating the inclusion relation $N \subset M$, the index matrix and the trace matrix. The index matrix $\Lambda_{N}^{M}=\left(\lambda_{i j}\right)$ is given by

$$
\lambda_{i j}= \begin{cases}{\left[M_{p_{i} q_{j}}: N_{p_{i} q}\right]^{1 / 2}} & p_{i} q_{j} \neq 0 \\ 0 & p_{i} q_{j}=0\end{cases}
$$

and the trace matrix $T_{N}^{M}=\left(t_{i j}\right)$ by $t_{i j}=t r_{M_{j}}\left(p_{i} q_{j}\right)$, where $t r_{M_{j}}$ is the unique normalized normal trace on M_{j}.

We suppose that N is of finite index in M, i.e., there is a faithful representation π of M on a Hilbert space such that $\pi(N)^{\prime}$ is finite. Then the algebra $\left\langle M, e_{N}\right\rangle$ obtained by basic construction for $N \subset M$ is a finite direct sum of II_{1} factors and the corresponding minimal central projections are $J q_{1} J, \ldots, J q_{m} J$, where J is the canonical conjugation on $L^{2}(M, t r)$. We know the following in [1].

$$
\begin{equation*}
\text { The equality } \vec{t}=T_{N}^{M} \vec{s} \text { holds. } \tag{1.1}
\end{equation*}
$$

$$
\begin{gather*}
\Lambda_{M}^{\left\langle M, e_{N}\right\rangle}=\left(\Lambda_{N}^{M}\right)^{t} \tag{1.2}\\
T_{M}^{\left\langle M, e_{N}\right\rangle}=\tilde{T}_{N}^{M} F_{N}^{M}, \tag{1.3}
\end{gather*}
$$

where $\left(\tilde{T}_{N}^{M}\right)_{j i}=\left\{\begin{array}{ll}\frac{\lambda_{i j}^{2}}{t_{i j}} & p_{i} q_{j} \neq 0 \\ 0 & p_{i} q_{j}=0,\end{array}, F_{N}^{M}=\operatorname{diag}\left(\varphi_{1}, \cdots, \varphi_{n}\right), \varphi_{i}=\left(\sum_{j}\left(\tilde{T}_{N}^{M}\right)_{j i}\right)^{-1}\right.$.
For any trace Tr on $\left\langle M, e_{N}\right\rangle, \operatorname{Tr}\left(e_{N} p_{i}\right)=\varphi_{i} \operatorname{Tr}\left(J p_{i} J\right)$.
The index $[M: N]$ is defined as $[M: N]=r\left(\tilde{T}_{N}^{M} T_{N}^{M}\right)$, where $r(T)$ is the spectral radius of T.

Now let $M_{0} \subset M_{1}$ be a pair of II_{1} factors with finite index and trivial relative commutant. By the basic construction, we obtain a tower of $\mathrm{II}_{1} \mathrm{fac}$ -
tors $M_{0} \subset M_{1} \subset M_{2} \subset \cdots \subset M_{n} \subset \cdots$. Since the relative commutant M_{n-1}^{\prime} $\cap M_{n}$ is trivial, we have in this case:

$$
\begin{equation*}
\operatorname{tr}_{M_{n}}(x)=t r_{M_{0}^{\prime}}(x) \text { for } x \in M_{0}^{\prime} \cap M_{n} . \tag{1.5}
\end{equation*}
$$

§2. Factors generated by direct sums of II_{1} factors. We construct a pair of factors from finite direct sums of II_{1} factors and calculate the index for the pair.

Lemma 1. Let $N \subset M$ be a pair of II_{1} von Neumann algebras acting on a Hilbert space H with finite dimensional centers. Let $t r$ be a faithful finite trace on M and E_{N} the trace preserving conditional expectation of M onto N. Suppose a projection $e \in B(H)$ satisfies exe $=E_{N}(x)$ e for all $x \in M$ and $e N \cong N$. Then,
(1) $\langle M, e\rangle=A \oplus B$, with $A \cong\left\langle M, e_{N}\right\rangle$, and $B \cong C u w$-closed subalgebra of M.
(2) Let $z \in\langle M, e\rangle$ be the central projection onto A. Then z is equal to the central support of e.
(3) Let Tr be a trace on $\langle M, e\rangle$ such that $\left.\operatorname{Tr}\right|_{M}=t r$, then

$$
\operatorname{Tr}(e) \geq d \cdot \operatorname{Tr}(z), \text { where } d=\min \left\{\varphi_{i}=\left(F_{N}^{M}\right)_{i i} ; i=1, \ldots, n\right\}
$$

Proof. (1) Let M_{1} be a $*$-algebra generated by $M \cup\{e\}$, and define an ultrastrong ($=$ us) continuous $*$-homomorphism $\Phi: M_{1} \rightarrow\left\langle M, e_{N}\right\rangle$ by $\Phi\left(x_{0}\right.$ $\left.+\sum_{i=1}^{n} x_{i} e y_{i}\right)=x_{0}+\sum_{i=1}^{n} x_{i} e_{N} y_{i}$, and denote the extension of Φ to $\langle M, e\rangle$ by φ. Then the map φ is ultraweak ($=$ uw) continuous $*$-homomorphism from $\langle M, e\rangle$ onto $\left\langle M, e_{N}\right\rangle$. Put $B=\operatorname{Ker}(\varphi) \subset\langle M, e\rangle$, then B is a uw-closed two-sided ideal of $\langle M, e\rangle$ and there exists a central projection $z \in\langle M, e\rangle$ such that $B=(1-z)\langle M, e\rangle$. Define $A=z\langle M, e\rangle$, then $\varphi: A$ $\rightarrow\left\langle M, e_{N}\right\rangle$ is a $*$-isomorphism. Therefore

$$
\langle M, e\rangle=A \oplus B \text { and } A \cong\left\langle M, e_{N}\right\rangle .
$$

(2) The proof is simple and so we omit it.
(3) Let $\left\{p_{i}\right\}_{i=1}^{n}$ be the minimal central projections of N and $\left\{\tilde{p}_{i}\right\}_{i=1}^{n}$ the corresponding central projections of $A \cong\left\langle M, e_{N}\right\rangle$. Moreover let $\Psi: A \rightarrow$ $\left\langle M, e_{N}\right\rangle$ be a $*$-isomorphism such that $\Psi\left(\bar{p}_{i}\right)=J p_{i} J$, where J is as above. Take another trace $T r^{\prime}=T r^{\circ} \Psi^{-1}$ on $\langle M, e\rangle$, then

$$
\operatorname{Tr}\left(e \bar{p}_{i}\right)=\operatorname{Tr}^{\prime}\left(e_{N} J p_{i} J\right)=\varphi_{i} \operatorname{Tr}^{\prime}\left(J p_{i} J\right)=\varphi_{i} \operatorname{Tr}\left(\tilde{p}_{i}\right) \geq d \cdot \operatorname{Tr}\left(\tilde{p}_{i}\right)
$$

and therefore $\operatorname{Tr}(e)=\sum_{i} \operatorname{Tr}\left(e p_{i}\right) \geq d \sum_{i} \operatorname{Tr}\left(p_{i}\right)=d \cdot \operatorname{Tr}(z)$.
Q.E.D

Let $\left\{M_{n}\right\}_{n \in \boldsymbol{N}}$ and $\left\{N_{n}\right\}_{n \in \boldsymbol{N}}$ be two increasing sequences of direct sums of II_{1} factors such that, for each $n \in \boldsymbol{N}$, the following is a commuting square:

$$
\begin{array}{lll}
M_{n} & \subset & M_{n+1} \\
\cup & & \cup \\
N_{n} & \subset & N_{n+1} .
\end{array}
$$

Here we treat two conditions.
Condition I (Periodicity). There exist $n_{0} \geq 1$ and $p \geq 1$ such that for any $n \geq n_{0}, T_{N_{n}}^{N_{n+1}}, T_{M_{n}}^{M_{n+1}}$ and $F_{N_{n}}^{M_{n}}$ are periodic with period p and $T_{N_{n}}^{N_{n+p}}$, $T_{N_{n}}^{N_{n+p}}$ are primitive.

Condition II (Lower Boundedness). There exists a constant $d>0$ such that $\left(F_{N_{n}}^{M_{n}}\right)_{i i} \geq d$ for all n and i.

It is clear that Condition II follows from Condition I.

We put $M=\left(\cup M_{n}\right)^{\prime \prime}$ and $N=\left(\cup N_{n}\right)^{\prime \prime}$.
Lemma 2. Let $\left\{M_{n}\right\}_{n \in \boldsymbol{N}}$ and $\left\{N_{n}\right\}_{n \in \boldsymbol{N}}$ are as above.
(1) If Condition I holds, M and N are $I I_{1}$ factors.
(2) If Condition II holds and M, N are $I I_{1}$ factors, then $[M: N]<\infty$.

Proof. (1) Let $t r$ be a normalized trace on M and \vec{s}_{n} the trace vector of $t r$ for M_{n}. We may suppose that $n_{0}=p=1$. Then putting $T_{M_{n}}^{M_{n+1}}=T$ for any $n \in \boldsymbol{N}$, we have by (1.1),

$$
\vec{s}_{n}=T^{k} \vec{s}_{n+k} \text { for all } k \geq 1
$$

So $\vec{s}_{n} \in \cap_{k} T^{k}\left(\boldsymbol{R}^{+}\right)^{m}$, where $\boldsymbol{R}^{+}=\{x \in \boldsymbol{R} ; x>0\}$, i.e., \vec{s}_{n} is a Perron Frobenius eigenvector of T. Therefore the normalized trace on M is unique so that M is a II_{1} factor.
(2) Let z_{n} be the central support of e_{N} in $\left\langle M_{n}, e_{N}\right\rangle$, then $z_{n} \rightarrow 1$ (us). Take a semifinite trace Tr on $\left\langle M, e_{N}\right\rangle$. Since $e_{N}\left\langle M, e_{N}\right\rangle e_{N}=N e_{N} \cong N$, we see that e_{N} is a finite projection and $\operatorname{Tr}\left(e_{N}\right)<\infty$. From Lemma 1 (3), we get $\operatorname{Tr}\left(e_{N}\right) \geq d \cdot \operatorname{Tr}\left(z_{n}\right)$ for all $n \in N$, and letting $n \rightarrow \infty$,

$$
\operatorname{Tr}\left(e_{N}\right) \geq d \cdot \operatorname{Tr}(1) \quad \text { or } \quad \operatorname{Tr}(1) \leq d^{-1} \operatorname{Tr}\left(e_{N}\right)<\infty .
$$

Therefore $\left\langle M, e_{N}\right\rangle$ is finite so that $[M: N]$ is finite.
Q.E.D

Now we give a new index formula which is one of our main results.
Theorem 1. Let $\left\{M_{n}\right\}_{n \in \boldsymbol{N}}$ and $\left\{N_{n}\right\}_{n \in \boldsymbol{N}}$ are as above.
(1) Assume M and N are $I I_{1}$ factors, and $[M: N]<\infty$. Then

$$
[M: N]=\lim _{n}\left\langle\vec{t}_{n}, \vec{f}_{n}\right\rangle
$$

where $\vec{f}_{n}=\left(\left(F_{N_{n}}^{M_{n}}\right)_{i i}^{-1}\right)_{i}, \vec{f}_{n}$ is the trace vector of N_{n} and $\langle\cdot, \cdot\rangle$ is the standard inner product.
(2) If Condition I holds, then for all $n \geq n_{0}$

$$
[M: N]=\left\langle\vec{t}_{n}, \vec{f}_{n}\right\rangle=\left[M_{n}: N_{n}\right]
$$

Proof. (1) Since the index [$M: N$] is finite, there exists a normalized trace tr on $\left\langle M, e_{N}\right\rangle$ such that

$$
\operatorname{tr}\left(x e_{N}\right)=[M: N]^{-1} \operatorname{tr}(x) \text { for } x \in M
$$

Using Lemma 1 , we get a uw-closed subalgebra A of $\left\langle M_{n}, e_{N}\right\rangle$, *isomorphic to $\left\langle M_{n}, e_{N_{n}}\right\rangle$. Let $\left\{p_{i}\right\}_{i=1}^{m}$ be the minimal central projections of $N_{n},\left\{p_{i}\right\}_{i=1}^{m}$ be the corresponding central projections of A, and $\Psi: A \rightarrow\left\langle M_{n}\right.$, $\left.e_{N_{n}}\right\rangle$ be the $*$-isomorphism such that $\Psi\left(\tilde{p}_{i}\right)=J p_{i} J$, where J is the canonical conjugation on $L^{2}\left(M_{n}, e_{N_{n}}\right)$ is the canonical conjugation. Take the trace $t r^{\prime}=$ $t r \circ \Psi^{-1}$ on $\left\langle M_{n}, e_{N_{n}}\right\rangle$, then
$\operatorname{tr}\left(\bar{p}_{i}\right)=\operatorname{tr}^{\prime}\left(J p_{i} J\right)=\varphi_{n, i}^{-1} \operatorname{tr}^{\prime}\left(e_{N_{n}} p_{i}\right)=\varphi_{n, i}^{-1} \operatorname{tr}\left(e_{N} p_{i}\right)=\varphi_{n, i}^{-1}[M: N]^{-1} \operatorname{tr}\left(p_{i}\right)$, where $\varphi_{n, i}=\left(F_{N_{n}}^{M_{n}}\right)_{i i}$. Denoting the trace vector of N_{n} for tr by $\vec{t}_{n}=$ $\left(t_{n, 1}, \ldots, t_{n, m}\right),(m$ depends on $n)$ and the central support of e_{N} for $\left\langle M_{n}\right.$, $\left.e_{N}\right\rangle$ by z_{n}, we get

$$
\begin{aligned}
\operatorname{tr}\left(z_{n}\right) & =\sum_{i} \varphi_{n, i}^{-1}[M: N]^{-1} \operatorname{tr}\left(p_{i}\right)=[M: N]^{-1} \sum_{i} \varphi_{n, i}^{-1} t_{n, i} \\
& =[M: N]^{-1}\left\langle\vec{t}_{n}, \vec{f}_{n}\right\rangle .
\end{aligned}
$$

Since $z_{n} \rightarrow 1$ (uw) as $n \rightarrow \infty$, it follows that $\lim _{n}\left\langle\vec{f}_{n}, \vec{f}_{n}\right\rangle=[M: N]$.
(2) If Condition I holds, then for $n \geq n_{0}$ the trace vector \vec{t}_{n} is a Perron Frobenius eigenvector of $S_{n}=T_{N_{n}}^{N_{n+p}}$ by the proof of Lemma 2. Since S_{n} and $F_{N_{n}}^{M_{n}}$ are periodic with period p, \vec{t}_{n} and \vec{f}_{n} are also periodic for $n \geq n_{0}$. Be-
cause $\left\langle\vec{t}_{n}, \vec{f}_{n}\right\rangle$ converges to $[M: N]$, we have for $n \geq n_{0}$

$$
[M: N]=\left\langle\vec{t}_{n}, \vec{f}_{n}\right\rangle \text { and } z_{n}=1
$$

From $z_{n}=1$, we have $\left\langle M_{n}, e_{N_{n}}\right\rangle \cong\left\langle M_{n}, e_{N}\right\rangle$, and so there exists a $*$ isomorphism $\Psi:\left\langle M_{n}, e_{N_{n}}\right\rangle \rightarrow\left\langle M_{n}, e_{N}\right\rangle$. Let $t r$ be a Markov trace on $\left\langle M_{n}\right.$, $\left.e_{N}\right\rangle$, then $\operatorname{tr}^{\prime}=\operatorname{tr} \circ \Psi$ is also a Markov trace on $\left\langle M_{n}, e_{N_{n}}\right\rangle$. Let \vec{s}_{n} be the trace vector of M_{n}, then

$$
\tilde{T}_{n} T_{n} \vec{s}_{n}=[M: N] \vec{s}_{n},
$$

where $T_{n}=T_{N_{n}}^{M_{n}}$ and $\tilde{T}_{n}=\tilde{T}_{N_{n}}^{M_{n}}$. Therefore \vec{s}_{n} is a Perron Forbenius eigenvector of $\tilde{T}_{n} T_{n}$ so that

$$
[M: N]=r\left(\tilde{T}_{n} T_{n}\right)=\left[M_{n}: N_{n}\right]
$$

Q.E.D

Remark. In case that M_{n} and N_{n} are finite direct sums of full matrix algebras, the same formula holds too. This formula is different from Wenzl's index formula in [4], but essentially the same.
§3. Examples. We give examples of $\left\{M_{n}\right\}_{n}$ and $\left\{N_{n}\right\}_{n}$ satisfying Condition II.

Let $A_{-1} \subset A_{0}$ be an irreducible pair of II_{1} factors with index λ. If $\lambda<4$, there exists $k \in N$ such that $\lambda=4 \cos ^{2}(\pi / k)$. In case $\lambda \geq 4$, we put $k=$ ∞. By the basic construction we get a sequences of II_{1} factors $A_{-1} \subset A_{0} \subset$ $A_{1}=\left\langle A_{0}, e_{1}\right\rangle \subset A_{2}=\left\langle A_{1}, e_{2}\right\rangle \subset \cdots$, where $e_{i}=e_{A_{t-2}}$. Now we define $N_{0}=$ $A_{0}, N_{i}=\left\langle A_{-1}, e_{1}, \ldots, e_{i}\right\rangle$ for $i \geq 1$ and $M_{j}=A_{j}$ for $j \geq 0$. Then $N_{n} \cong N$ $\otimes\left\langle e_{1}, \ldots, e_{n}\right\rangle$, so we can see the structure of N_{n} from that of $\left\langle e_{1}, \ldots, e_{n}\right\rangle$. This fact is important in the sequel.

Lemma 3. For all n, the following is a commuting square:

$$
\begin{array}{ccc}
M_{n} \subset & M_{n+1} \\
\cup & & \cup \\
N_{n} & \subset & N_{n+1} .
\end{array}
$$

Next we calculate the matrices $T_{M_{n}}^{M_{n+1}}, T_{N_{n}}^{N_{n+1}}$ and $T_{N_{n}}^{M_{n}}$. First it is clear that $T_{M_{n}}^{M_{n+1}}=(1)$.

Proposition 1. Let $\Lambda_{N_{n}}^{N_{n+1}}$ be the index matrix and $T_{N_{n}}^{N_{n+1}}$ the trace matrix of the inclusion $N_{n} \subset N_{n+1}$. Then,

$$
\begin{gathered}
\Lambda_{N_{n}}^{N_{n+1}}=\left(d_{i, j}^{(n)}\right)_{i j}, d_{i, j}^{(n)}= \begin{cases}1 & j=i, i+1, \\
0 & \text { otherwise },\end{cases} \\
T_{N_{n}}^{N_{n+1}}=\left(c_{i, j}^{(n)}\right)_{i j}, c_{i, j}^{(n)}= \begin{cases}\frac{\alpha_{n, i}}{\alpha_{n+1, j}} & j=i, i+1, \\
0 & \text { otherwise },\end{cases}
\end{gathered}
$$

where, for $n \leq k-3$,

$$
i=0,1, \ldots,\left[\frac{n+1}{2}\right], j=0,1, \ldots,\left[\frac{n+2}{2}\right], \alpha_{n, j}=\binom{n}{i}=\binom{n}{i-2}
$$

and for $n \geq k-2$,

$$
\begin{gathered}
i=\left[\frac{n-k+4}{2}\right], \ldots,\left[\frac{n+1}{2}\right], j=\left[\frac{n-k+5}{2}\right], \ldots,\left[\frac{n+2}{2}\right] \\
\alpha_{n, j}=\binom{n}{i}-\binom{n}{i-2}-\binom{n}{i+k-2}
\end{gathered}
$$

We can prove this proposition by induction on n using Lemma 1 .
Proposition 2. Let $\Lambda_{N_{n}}^{M_{n}}$ be the index matrix and $T_{N_{n}}^{M_{n}}$ the trace matrix of the inclusion $N_{n} \subset M_{n}$. Then,

$$
\begin{aligned}
& T_{N_{n}}^{M_{n}}=\left(c_{i}^{(n)}\right) \text { with } c_{i}^{(n)}=\alpha_{n, i} \lambda^{-i} P_{n+2-2 i}\left(\lambda^{-1}\right) \\
& \Lambda_{N_{n}}^{M_{n}}=\left(d_{i}^{(n)}\right) \text { with } d_{i}^{(n)}=\lambda^{n+1-2 i}{ }^{n+2} P_{n+2-2 i}\left(\lambda^{-1}\right),
\end{aligned}
$$

where $i=0, \ldots,\left[\frac{n+1}{2}\right]$ for $n \leq k-3 ; i=\left[\frac{n-k+4}{2}\right], \ldots,\left[\frac{n+1}{2}\right]$ for $n \geq k-2$, and $\alpha_{n, i}$ is the constant in the previous proposition, and $P_{n}(t)$ is Jones polynomial defined by $P_{0}(t)=P_{1}(t)=1$ and $P_{n}(t)=P_{n-1}(t)-t P_{n-2}(t)$.

Proof. Let $\left\{p_{n, i}\right\}_{i}$ be the minimal central projections corresponding to the factorization of N_{n}. Since $T_{N_{n}}^{M_{n}}=\left(\operatorname{tr}\left(p_{n, i}\right)\right)_{i}$, it is easy to see that $c_{i}^{(n)}=$ $\alpha_{n, i} \lambda^{-i} P_{n+2-2 i}\left(\lambda^{-1}\right)$. We prove the assertion for $\Lambda_{N_{n}}^{M_{n}}$ by induction on n. Since $d_{0}^{(0)}=\left[A_{0}: A_{-1}\right]^{1 / 2}=\lambda^{1 / 2}$, the statement is clear for $n=0$. Suppose it is true for $n=m$. For $j=i, i+1$,

$$
\begin{aligned}
& \left(d_{j}^{(m+1)}\right)^{2}=\left[\left(M_{m+1}\right)_{p_{m+1,1}}:\left(N_{m+1}\right)_{p_{m+1, j}}\right] \\
& =\left[\left(M_{m+1}\right)_{p_{m+1,1} p_{m, i}}:\left(N_{m+1}\right)_{p_{m+1}, p_{m, i}}\right] \\
& =\left[\left(M_{m+1}\right)_{p_{m+1, j} p_{m, i}}:\left(N_{m}\right)_{p_{m+1}, p_{m, i}}\right] \\
& =t r_{\left(M_{m+1}\right)^{p_{m, i}}}(q) \operatorname{tr}_{\left(N_{m}\right)^{\prime} p_{m, i}}(q)\left[\left(M_{m+1}\right)_{p_{m, i}}:\left(N_{m}\right)_{p_{m, i}}\right],
\end{aligned}
$$

where $q=p_{m+1, j} p_{m, i}$.
Denote by $t r$ the trace on M_{m+1}, then $\operatorname{tr}_{\left(M_{m+1}\right)_{p m}(q)}=\operatorname{tr}\left(p_{m, i}\right)^{-1} \operatorname{tr}(q)$ and $t r_{\left(N_{m}\right)^{\prime} p_{m, i}}(q)=t r_{N_{0}^{\prime}}\left(p_{m, i}\right)^{-1} t r_{N_{0}^{\prime}}(q)=\operatorname{tr}\left(p_{m, i}\right)^{-1} \operatorname{tr}(q)$ by ${ }^{\left.M_{m+1}\right)^{m, i}}(1.5)$. So

$$
\begin{aligned}
\left(d_{j}^{m+1}\right)^{2} & =\operatorname{tr}\left(p_{m, i}\right)^{-2} \operatorname{tr}(q)^{2}\left[\left(M_{m+1}\right)_{p_{m, i}}:\left(M_{m}\right)_{p_{m, i}}\right]\left[\left(M_{m}\right)_{p_{m, i}}:\left(N_{m}\right)_{p_{m, i}}\right] \\
& =\operatorname{tr}\left(p_{m, i}\right)^{-2} \operatorname{tr}\left(p_{m+1, j}\right)^{2} \operatorname{tr}_{\left(N_{m+1}\right)_{m+1, j},}(q)^{2}\left(d_{i}^{(m)}\right)^{2} \lambda .
\end{aligned}
$$

Using the hypothesis of induction and Proposition 1, we obtain

$$
\begin{aligned}
d_{j}^{(m+1)} & =\frac{\alpha_{m, i}}{\alpha_{m+1, j}} \operatorname{tr}\left(p_{m, i}\right)^{-1} \operatorname{tr}\left(p_{m+1, j}\right) d_{i}^{(m)} \lambda^{1 / 2} \\
& =\lambda^{(m+2-2 j) / 2} P_{m+3-2 i}\left(\lambda^{-1}\right)
\end{aligned}
$$

Q.E.D

Put $M=\left(\cup_{n} M_{n}\right)^{\prime \prime}$ and $N=\left(\cup_{n} N_{n}\right)^{\prime \prime}$, then M and N are II_{1} factors (cf. [3]).

Theorem 2. Let $A_{-1} \subset A_{0}$ be an irreducible pair of $I I_{1}$ factors with index λ and construct $\left\{M_{n}\right\}_{n}$ and $\left\{N_{n}\right\}_{n}$ by the above method.
(1) $\left\{M_{n}\right\}_{n}$ and $\left\{N_{n}\right\}_{n}$ satisfy Condition II if and only if the index $\lambda<4$.
(2) The index $[M: N]$ is given by

$$
[M: N]= \begin{cases}\frac{k}{4 \sin ^{2} \frac{\pi}{k}} & \lambda<4 \\ \infty & \lambda \geq 4\end{cases}
$$

where k is an integer such that $\lambda=4 \cos ^{2}(\pi / k)$.
Proof. Let $\left\{p_{n, i}\right\}_{i}$ be the minimal central projections corresponding to the factorization of N_{n}. Then the trace vector \vec{t}_{n} of N_{n} is equal to $\left(\operatorname{tr}\left(p_{n, i}\right)\right)_{i}$ and the vector $\vec{f}_{n}=\left(f_{n, i}\right)_{i}$ in Theorem 1 is given by $\vec{f}_{n}=\left(\operatorname{tr}\left(p_{n, i}\right)^{-1}\left(d_{i}^{(n)}\right)^{2}\right)_{i}$ with $d_{i}^{(n)}=\left[\left(M_{n}\right)_{p_{n, i}}:\left(N_{n}\right)_{p_{n, i}}\right]^{1 / 2}$. By Proposition 2,

$$
\left(f_{n, i}\right)^{-1}=\alpha_{n, i} /\left(\lambda^{n+1-2 i} P_{n+2-2 i}\left(\lambda^{-1}\right)\right) .
$$

a) Case of $\lambda<4$: Since $P_{n}\left(\left(4 \cos ^{2} \theta_{k}\right)^{-1}\right)=\sin n \theta_{k} /\left(2^{n-1} \cos ^{n-1} \theta_{k}\right.$ $\sin \theta_{k}$) with $\theta_{k}=\pi / k$,

$$
\left(f_{n, i}\right)^{-1}=\alpha_{n, i} 2^{n+1-i} \sin \theta_{k} /\left(\sin (n+2-2 i) \theta_{k} \cos ^{n+1} \theta_{k}\right) \geq \sin \theta_{k} .
$$

Therefore we see that Condition II holds. Further by Theorem 1,

$$
\begin{aligned}
{[M: N] } & =\lim _{n}\left\langle\vec{t}_{n}, \vec{f}_{n}\right\rangle=\lim _{n} \sum_{i=[(n-k+4) / 2]}^{[(n+1) / 2]} \operatorname{tr}\left(p_{n, i}\right) \operatorname{tr}\left(p_{n, i}\right)^{-1}\left(d_{i}^{(n)}\right)^{2} \\
& =\lim _{n} \sum_{i=[(n+k+4) / 4] / 2]}^{[(n+1)} \frac{\sin ^{2}(n+2-2 i) \theta_{k}}{\sin ^{2} \theta_{k}}=\frac{k}{4 \sin ^{2} \frac{\pi}{k}} .
\end{aligned}
$$

b) Case of $\lambda \geq 4$: By simple calculation, it follows that

$$
\left(f_{n, 0}\right)^{-1}=\alpha_{n, 0} /\left(\lambda^{n+1} P_{n+2}\left(\lambda^{-1}\right)\right) \leq \lambda^{-n / 2} \rightarrow 0(n \rightarrow \infty) .
$$

So, Condition II doesn't hold. Now suppose that $[M: N]<\infty$. Then by Theorem 1,

$$
\begin{aligned}
{[M: N] } & =\lim _{n}\left\langle\vec{t}_{n}, \vec{f}_{n}\right\rangle=\lim _{n}{ }^{[(n+1) / 2]} \sum_{i=0}^{(n)}\left(d_{i}^{(n)}\right)^{2} \\
& =\lim _{n}{ }^{[n+1 / 2]} \sum_{i=0} \lambda^{n+1-2 j} P_{n+2-2 j}^{2}\left(\lambda^{-1}\right) \geq \lim _{n}{ }^{[(n+1) / 2]} \sum_{i=0} \lambda^{-1}=\infty .
\end{aligned}
$$

This is a contradiction, so that $[M: N]=\infty$.

References

[1] F. M. Goodman, P. de la Harpe and V. F. R. Jones: Coxeter Graphs and Towers of Algebras. MSRI publications, vol. 14, Springer-Verlag, New York (1989).
[2] V. F. R. Jones: Index for subfactors. Invent. Math., 72, 1-25 (1983).
[3] M. Choda: Index for factors generated by Jones' two sided sequence of projections. Pacific J. Math., 139, 1-16 (1989).
[4] H. Wenzl: Hecke algebras of type A_{n} and subfactors. Invent. Math., 92, 349-383 (1988).

