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1. Introduction. A holomorphic curve from C into Pn(C) has no no-
tion which plays exactly the same role as the derivative of meromorphic
functions. Our purpose of this paper is then to introduce a sort of derivative
to holomorphic curves which possesses similar properties to the derivative
of meromorphic functions.

Let f C -- Pn(C) be a holomorphic curve and let
(fx ,fn+l) C-- C+1 (0)

be a reduced representation of f where n is a positive integer. Then, fx,...,
f,+x are entire functions without common zeros for all. The characteristic
function T(r, f) of f is defined as follows:

(1) T(r, f) 2 log (e)II dO log

where ()II (I ()I + + .()Ib, In addition, ut
(2) g(z) max I(z),

1NjN+I

then we have the relation

() T(f, f) 2 log U(fe)dO + O(1) ([1]).

It is said that f is transcendental if limT(f, f)/log f . We de-
note by o(f) the order of f:

log T(f, f)
0 (f) lim sup log f

and by S(g, f) any quantity satisfying

[ O(log r) (r ) if p(f)S(r ’f) [O(logrT(r,f)) (r, rE) ifp(f)

where E is a subset of [0, ) for which re(E) .
From now on throughout the paper we suppose that f is non-

degenerate; that is to say, the functions ,... ,fn+x are linearly independent
over C.

Let W(fx, ,fn+)be the Wronskian of fx, fn+x. Then, it is
well-known that ,...,+ are linearly independent over C if and only if

W(,..., fn+x) is not identically equal to zero.
Our definition of an extension of the derivative of meromorphic func-

tions to non-degenerate holomorphic curves is as follows.
Definition (extension of the derivative), we call the holomorphic curve

induced by the mapping
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(4) (f+l f+l W(f f,+)) C---*
the derived holomorphic curve of f and express it by f*.

Note that when n 1, f* corresponds exactly to the derivative of
meromorphic function f/f.

The holomorphic curve f* has the following properties.
(i) f* is transcendental if f is transcendental (Theorem 1).
(ii) The order of f* is equal to the order of f (Theorem 2).
(iii) f* is not always non-degenerate (Theorem 3).

Applications (see [7]) will appear elsewhere.
We use the standard notation of the Nevanlinna theory of meromorphic

unctions ([2]).
2. Lemmas. We use the same notation as in Section 1.
Let d(z) be an entire function such that the functions

f+/d, f$+/d and W(fl,..., fn+)/d
are entire functions without common zeros for all. Then;

(fn+l/d,..., fnn+/d, W(fl,..., fn+)/d)
is a reduced representation of f*.

Lemmal. (a) T(r, f/f) < T(r, f) + 0(1) (k 4: j) ([1]).
n+l

(b) T(r, f) < T(r, f/f,) + 0(1) ([6], Lemme 1).

Remark 1. This lemma holds good even if f is degenerate (see [1] and

Lemma 2. (a) W(k,..., kf+) k"+ W(fl,...,f+l)
W(f,

(b) W((fz/f)’,..., (f+/f)’),
f+

where k k(z) is a meromorphic function in lzl < c (see [5], p. 108).
Lemma3. T(r, f*) < (n + 1)T(r,f) N(r, 1/d) + S(r, f).
Proof Put

V(z) =max ]d(z)] Id(z) [d(z)[
where W- W(f,..., f,+). Then by (3) we have

(4) T(r, f *) 1 io)
2 log V(re dO + 0(1).

Put h /Q" 2,...,n + 1). Then, since
W W(hz,... ,h,+)

fx" f+ hz h,+w L f"+ L L+
by Lemma 2, we have at any point z

W(h,...,h:+x)

and so we have
w(hi,

log V(z) (n + 1) log g(z) + log+[

We then obtain from (4)

T(r, f *) <--

log d(z)I.

n+l
2 log U(re dO + log+l : - dO
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log ld(re) dO + 0(1)

where
(n + 1)T(r, f) --N(r, 1/d) + S(r, f),

fo W(h’2,...,h’/
S(r, f) 2re lg+[ : h- dO + O(1)

n-1 n+l

< N m(r h/h) + 0(1)
k=l j=2

O(log rT(r, f)) (r , r E) otherwise,
E being a subset of [0, ) for which re(E) since by Lemma 1, ()
(5) T(r, h) < T(r, f) + 0() " 2,..., + ).

Lemma 4. Let h, ,hn be meromorphic iu z and linearly inde-

peudeut over C.
() If p(h) p(h) " 1,... ,u- 1), theu the order of W(hl,.. ,h) is

equal to p(h) ([4], Lemma 3).
(b) If h ,hn_ are rational aud ff hn is transceudeutal, then W(h,...,hn) is

transcendental.
The proof of (a) is given in [3], pp. 666-667. Applying the method used

in () to the case of (b), we can easily pove (b) of this lemma.
3. Results. We use the same notation as in 1 or 2.
Prosition 1. The defiuitiou of* is iudependent of the choice of a re-

duced representation of
Proo Let (gl, gn+) be another reduced representation of f. Then

there is an entire function k(z) without zero such that
+ 1) Then, g+= kn+f " 1,...,n) and by Lemma 2,

w(g,...,g+) W(k,...,k+) k+W(L,...&+).
Thus we hve ou poposition.

Proposition 2. re(r, e+, ) T(r, f*) + N(r, 1/d) + S(r, f), where

(re)
de (r, ) N(r, /+1).

1
re(r, e+, f)’= 2 lg

f+(ree)
Proo Put W W(f,..., fn+) and

v(z) max( (z) +/ d(z) ,..., (z) +/ d(z) , W(z) / (z) ,
then it holds that

+(z)
() o V(z) (n + ) o V(z)- o+ (

og+ (z) +l(Z)
W(z) log d(z)

where U(z) is defined in (2). In fact,

(7)

(8)

(i) When U(z) max{I f(z)1,..., If.(z)[}, it is easy to see that
log V(z) >_ (n + 1) log U(z) log d(z)I.

(ii) When U(z) "-[fn+l(z)],
W(z)log] W(z)[ log f(z)l ""fn+l (Z)
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+ log A (z) fn+l () + (/,, + 1) log fn+l(z)
f.+(z)+

f+ (z
(n + 1) log U(z) =1 log+

W(z A(z f+ (z+ g+ A(z) ::: ].+(z lg+l Wt- f.+ (z A (zl f.+(zl
2 (n + 1) log U(z)

=x
lg+l (z) lg+[ W(z) 1"

Since
log V(z log W(z)[- log I,(z)I,

we have (6) from (7) and (8). We have from (3) and (6)

( f"+’hT(r, f*) + O(1) 2 (n + 1)T(r, f) m r

( )m r, +. N(r, 1/d)

by the first fundamental theorem of Nevanlinna,

>_ (n + 1)T(r, f) 2, m r m r

( _W_, )-N(r, 1/d)+O(1)N r,f,., fn+l
>_ ( + l) T(r, f) m r N(r, l ld) m(r, S)
>_ T(r, f) N(r, 1 If.+,) N(r, 1 Id) S(r, f)

re(r, e.+, f) N(r, 1 Id) S(r, f)
since

T(r, f) + O(1) 2rr log Ikl dO + N r,

re(r, f,+/f) + N(r, 1/f) (j 1,...,n).
Theorem 1. f* is transcendental iff is transcendental.

Proof (a) If there is at least one f (2 <_ j _< n) such that f/f, is trans-
cendental, then f+/f+= (f/fl)n+ is transcendental, so that by Lemma
1, (a), f* is transcendental.
(b) Suppose that /f (j 2,...,n) are rational. Then, since f is transcen-
dental, fn+/ is transcendental by Lemma 1, (b). We want to prove that W
f+* is transcendental.

Now, by Lemma 2, (b)
( w/f2+ w((A/A’,..., (f,+
Applying Lemma 4, (b) to h- +/(j- 1,... ,n) in (9), we obtain that

W/f+ is transcendental. This shows that f* is transcendental.
Theorem2. p(f*) =p(f).
Proof By Lemma 3, it is easy to see that p(f*) p(f). We note that

p(/f,) p(f) (j 2,...,n + 1) by Lemma 1, (a).
(a) Suppose that there is at least one (2 j n) such that p(/A)
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fn+i/f+i n+i)p(f) Then, p(j, p((f/f) p(f). By Lemma 1, (a) we
have p(f*) >_ p(f).
(b) Suppose that p(f/f) < p(f) (j 2,... ,n). Then, by Lemma 1, (b),
p(f,,+x/fl) p(f). We want to prove that p(W/f+) p(f).

Now, by Lemma 2, (b), (9) holds. Applying Lemma 4, (a) to h f+/f
(j= 1, ,n)in (9), we obtain that p(W/f+) p(f), since p(h)
< p(f) (j-" 1,... ,n- 1) and P(hn) P(f). This and Lemma 1 (a) show
that O (f *) >- O (f).

Thus we have o(f *) o(f).
Theorem . f* is not always non-degenerate.

Proof. We have only to give an example of non-degenerate, transcen-
dental holomorphic curve whose derived holomorphic curve is degenerate.

Let m be any integer not smaller than 3 and put n 2m--1. Put
(2j--1)Z/2’ ezf- e (j 1,... ,m), fm+ + 1, fm+ e 1 and

fm+ z- (J 3,...,m).
Then, it is easy to see that these n + 1 2m entire functions have no com-
mon zeros and are linearly independent over C. Let f be the holomorphic
curve induced by the mapping

(A,... ,L,,) c c’.
Then, f is non-degenerate and it is easy to see that f is transcendental by
Lemma 1, (a).

Now, f* is induced by
(fm,.. Zmfern-l, W(fl,...,Am)).

In this case, fm+. are linearly dependent over C.
In fact

fmZ, zm 2m 2m
m

(2j-1)z

1--fm+z (ez + 1) (e 1) 2 zmCz.t_.e
j=l

m

2 ,nC-ff".
j=l

This shows that f* is degenerate.
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