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1. Introduction. A holomorphic curve from C into P"(C) has no no-
tion which plays exactly the same role as the derivative of meromorphic
functions. Our purpose of this paper is then to introduce a sort of derivative
to holomorphic curves which possesses similar properties to the derivative
of meromorphic functions.

Let f : C— P"(C) be a holomorphic curve and let

fiye e rfus) : C— C™ = {0}
be a reduced representation of f, where # is a positive integer. Then, f,,...,
fu+1 are entire functions without common zeros for all. The characteristic
function T'(», f) of f is defined as follows:

1 2r i
(1) T, f) = 57 [ loglfire) [ 6 — tog| £ |,
where [f@ | = (£@ P+ -+ + | £, [DV% In addition, put
(2) U(z) = max |f;& ],
1<j<n+l

then we have the relation
1 2r i
(3) TG, f) = 57;]; log Ureydo + 0Q1) (1))

It is said that f is transcendental if lim,_7T(», f) /log r = o©. We de-
note by p(f) the order of f:

0(f) = lim sup ______loglz)‘;r; f)
and by S(r, f) any quantity satisfying
_ [OUog» (r— ) if o(f) < oo,
Str, ) = {O(log PT(r, ) (r— 0, r @ E) if p(f) = oo,

where E is a subset of [0, ) for which m(E) < oo,

From now on throughout the paper we suppose that f is non-
degenerate; that is to say, the functions f;,...,f,,; are linearly independent
over C.

Let W(f,, ..., f,s1) be the Wronskian of f,, ..., f,;;. Then, it is
well-known that f, ..., f,,; are linearly independent over C if and only if
W(f,..., fus1) is not identically equal to zero.

Our definition of an extension of the derivative of meromorphic func-
tions to non-degenerate holomorphic curves is as follows.

Definition (extension of the derivative). we call the holomorphic curve
induced by the mapping
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(4) UL 5 Wy, f)) 1 C— €
the derived holomorphic curve of f and express it by f*.
Note that when # =1, f* corresponds exactly to the derivative of
meromorphic function f,/f,.
The holomorphic curve f* has the following properties.
(i) f* is transcendental if f is transcendental (Theorem 1).
(ii) The order of f* is equal to the order of f (Theorem 2).
(iii) f* is not always non-degenerate (Theorem 3).
Applications (see [7]) will appear elsewhere.
We use the standard notation of the Nevanlinna theory of meromorphic
functions ([2]).
2. Lemmas. We use the same notation as in Section 1.
Let d(2) be an entire function such that the functions
frrd, . fr /d and W(,,. .., f.)/d
are entire functions without common zeros for all. Then,
irrd,. . 7 d, W, fa)/ D)

. . *
is a reduced representation of f .

Lemma 1. (a) T(r, f,/f) < T(r, ) + OQ1) (k # (1.
®) TG, ) <% TG, £,/£) + 0Q) (6], Lemme 1)

=2
Remark 1. This lemma holds good even if f is degenerate (see [1] and

[6]).
Lemma 2. (a) W(kf,,..., kf,,) = K" W, .. fosd) 3
(b) 8 e Suss) W /1) .o, (fad 7DD,
where k = k(2) is a meromgrphic fumction in | z| < o (see [5], p. 108).
Lemma3. T(, f® < m+ 1T, f) — Nor,1/d) + S@, f).

Proof. Put | | " | | »
_ i @ | W
V@ = max{ O T Taw T
where W= W(f,,..., f,+1). Then by (3) we have
27 )
() T, %) = 5= [ log Vire®d6 + 0(L).
0
Puth; = f;/f,(G=2,...,n+ 1). Then, since
14 W(h,, ... ,h,.)

W=hehwo oo DS h

: .hn+1
by Lemma 2, we have at any point 2z

| W| < U@ | W(Z'z.’:"’h"“)

PR |

and so we have
log V(z) < (n + 1) log U(2) + log" |
We then obtain from (4)

2n X 2n
TG, £% < an;1 fo log U(re“’)de+717;fo log

W(h;, .. ’h;l+1) _
Ty T, | —log| d(2) |.

s W, . k)
R

2

| a6
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2n

- ﬁ log | d(ze®) | d6 + 0Q1)

=m+ VDT, ) — N@,1/d) + S(r, f),

where
1 W)
St = 5= f log" | 257 | d + O(1)
nolndl ")
<SS mer, kP /h) + 0Q)
k=1 j=2
O(log ») (r— o) if o(f) < o0,
O(log rT(r, /) (r— oo, r €E) otherwise,
E being a subset of [0, ) for which m(E) < oo since by Lemma 1, (a)
(5) T(r, h) <T(r, ) +0Q) G=2,....n+ 1.
Lemma 4. Let hy,. . .,h, be meromorphic in | z| < o and linearly inde-

pendent over C.

(@ If oh) <ph,) G=1,...,m— 1), then the order of W(h,, .. .,h,) is
equal to p(h,) (4], Lemma 3).

(b) If hy,...,h,_, ave vational and if h, is transcendental, then W(h,,. . .,h,) is
transcendental.

The proof of (a) is given in [3], pp. 666-667. Applying the method used
n (a) to the case of (b), we can easily prove (b) of this lemma.

3. Results. We use the same notation as in §1 or §2.

Proposition 1. The definition of f ) ndependent of the choice of a 7e-
duced representation of f.

Proof. Let (g, ...,8,+1) be another reduced representation of f. Then
there is an entire function k(z) without zero such that g, = kf, G =1,...,n
+ 1). Then, g/*' = K" f""' (= 1,...,n) and by Lemma 2, (a)

Wigy, ... .8u0) = Wk, . kfo) = KW, ford)-
Thus we have our proposition.
Proposition 2. m(r, e, ) < T, f* + N@,1/d) + SG, f), where

1 o ( 10)
m(?’ en+1, f) 271, 1 Tﬂff_LeiT)"'
n+1

Proof. Put W= W(fl, ..y furp) and

V() = max{| ,(2) | " /| d(z) L. @ lda@ |, | W | /1d@) 1Y,
then it holds that

(6) log V() 2 (n + 1) log U(2) — ilo *'f"fé—i)z)‘

|fl(z) W(ZJ;;H-I(Z) | —log|d( |,

do = T(r, f) — N, 1/f,,).

where U(z) is defined in (2). In fact,

(i) When U(2) = max{| £,(2) |,..., |f,(2) I}, it is easy to see that
(7) log V(2) = (n+ 1) log U(z) — log| d(2) |.

(i) When U(2) = | £,,,(2 |,

14
8) log| W) | = log |z~ (ZJ)‘M(z)l
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|fl(z) a1 (@ | + (o + 1) log |f;;+1(2) |

funr(2 )
= (1 + 1) log UG — 3 log |fo+é)i)|
W(z) L@ [
+ lOg ‘f (Z) f;1+1(z) l - l | W(Z) I
>+ 1)logUz) — If”;z(f) | — log |f1(2) W(ZJ;”“(Z) l.

Since
log V(z) > log| W(2) | — log | d(2) |,
we have (6) from (7) and (8). We have from (3) and (6)

T(r, f + 0 = (n+ DTG, f) — Z m( ffﬂ>

- m( f‘ f”“) NG, 1/d
by the first fundamental theorem of Nevanlinna,

2+ DT, ) — Zm< ,f"fjl> ( "he an+1>

(7’, m) —N(r, 1/d) + 0(1)

>+ DTG, N = Zm(r, %) ~ 3 N(r, %) — N(, 1/d) = S(r, )
=2T@,f) —N@,1/f,,) — N, 1/d) — S, f)
=m(r, e, /) — N, 1/d) — S, )

j=

since
TG, ) + 01) = 1 ”1 Hd6+N( })
Fig o s 1
2o [ log" Wd0+N( f,>

=m(r, f,../f) + Nr,1/f) (G =1,...,m.

Theorem 1. f * is transcendental if [ is transcendental.

Proof. (a) If there is at least onef (2 < j < n) such that f;/f; is trans-
cendental, then fj"J'l/fln"L1 = (f,/f)" A is transcendental, so that by Lemma
1, (a), f* is transcendental.

(b) Suppose that f;/f, (j = 2,...,n) are rational. Then, since f is transcen-
dental, f,,,/f, is transcendental by Lemma 1, (b). We want to prove that W/
I is transcendental.

Now, by Lemma 2, (b)
(9) W/ = W /1) ,. (f,,ﬂ/fl)').
Applymg Lemma 4, (b) to h; = f,,,/f,(j = ..,n) in (9), we obtain that
W/f1 is transcendental. ThlS shows that f>l< is transcendental.

Theorem 2. o(f ™) = p().

Proof. By Lemma 3, it is easy to see that p(f ™) < p(f). We note that
o(fi/f) <p(f) (j=2,...,n+ 1) by Lemma 1, (a).
(a) Suppose that there is at least one f; (2 < j < %) such that o(f;/f) =
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o(f). Then, o(f)" /f"™) = o((f;/f)") = p(f). By Lemma 1, (a), we
have o(f*) = p(f).

(b) Suppose that p(f;/f) < p(f) (j=2,...,n). Then, by Lemma 1, (b),
0(f,01/f) = p(f). We want to prove that o(W/f""") = p(f).

Now, by Lemma 2, (b), (9) holds. Applying Lemma 4, (a) to k; = f;,,/f;
(j=1, ... ,m)in (9), we obtain that o(W/f*") = p(f), since o(h)
<p() (G=1,...,m — 1) and p(h,) = p(f). This and Lemma 1 (a) show
that o(f *) = p(f).

Thus we have p(f ) = p(f).

Theorem 3. f * is not always non-degenerate.

Proof. We have only to give an example of non-degenerate, transcen-
dental holomorphic curve whose derived holomorphic curve is degenerate.

Let m be any integer not smaller than 3 and put #=2m — 1. Put

f; — e(z;—l)z/Zm (] — 1“ . .y”l),fm+1 — ez +1’ fm+2 — ez -1 and
fur; =2 2 (=3,...,m).
Then, it is easy to see that these # + 1= 2m entire functions have no com-
mon zeros and are linearly independent over C. Let f be the holomorphic
curve induced by the mapping
(fis. o osfom) 1 C— c?.
Then, f is non-degenerate and it is easy to see that f is transcendental by
Lemma 1, (a).
Now, f>l< is induced by
"oy oy Wy o fo)) -
In this case, fi",..., f,,z,'fz are linearly dependent over C.
In fact m
fati = falte = (@€ D = (& = DT =2 2,600
i=

m
— 2m
=2 21 ZmCZj—lfj .
1=

This shows thatf* is degenerate.
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