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58. Selfsimilar Shrinking Curves for Anisotropic Curvature
Flow Equations
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We consider a simple looking ordinary differential equation of the form
(1) u”+u-—1(1—g)—=0inR
with a given positive function a(#). This equation arises in describing
selfsimilar solutions of anisotropic curvature flow equations. Since € is the
argument of the normal # of the curve, it is natural to impose 27w-periodicity
for a(6) in (1) and to ask for existence and uniqueness of 27-periodic solu-
tions.

The physical background of the above problem is an evolution equation
for embedded closed curves {I},s, in R” (see [10)):

Consider an equation for I';, where the normal velocity V is given by the
curvature k weighted by a direction-dependent factor a(6), i.e.

V=a®k, a® =pO GO + 7)),
where B and 7” + 7 are assumed to be positive, so that the equation is
parabolic. 7 is called the surface energy density and B is called the kinetic
coefficient.

In case a(f) = const. it is well known (see [3], [4], [6] and [9]) that any
initial curve becomes convex, after this it extincts in finite time, and that the
type of shrinking is asymptotically similar to that of a shrinking circle C, =
(2(tx — D)Y? C, where C denotes the unit circle centered at the origin.
(Here the time ¢, is the extinction time and AC denotes the dilation of C with
multiplier A.) The curvature of the circle then is a solution of (1).

In case of more general a(f), it was shown in [12] that selfsimilar solu-
tions, i.e. solutions satisfying

r,=Q@Q¢,—0N"’r
and thereby equation (1), exist if B(6)7(6) = const. Then I" defined as the
boundary of the so-called Wulff-Shape W, i.e.
(2) W,:= {x € R*| z-#(0) < 7(0) for all ¢ € R},
yields a solution I', of the evolution problem. Here #(0) denotes a unit
vector whose argument equals .

Our existence result now shows that such selfsimilar solutions exist for
arbitrary positive a(f). To simplify the notation we notice that a 27m-
periodic function can be regarded as a function on the flat torus T :=
R/27Z. Thus we define

Ci(D ={u<s C*(R) | u(@+ 2m) = u(6) for all 6 € R, u > 0}.
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Main existence theorem. Assume that a(0) is a positive, continuous func-
tion on T. Then there is a function u € C:(T) solving (1).

The proof is based on a-priori estimates and a continuity method. We
can derive a-priori bounds for solutions of (1), that only depend on the
bounds of a(f) from below and above. This enables us to apply a continuity
method connecting the well known case a(f) = const. and the case of gener-
al a(6). For details we would like to refer to [2].

Concerning uniqueness, we unfortunately have to make an additional
assumption on a(6) :

Uniqueness theorem. Let a(0) be a positive, continuous and w-periodic
Sfunction in R. Then the solution of (1) is unique.

The main tools in proving the result is a generalization of an
isoperimetric inequality by Gage. This result requires the mw-periodicity of
a(6).

Let us first introduce some notation: We denote the area of a set A by
m(A), the interior of a closed curve I" by int I, the length of a curve I" by
L and its surface energy with respect to some surface energy density f by

L
F D) = f £(6(s)) ds.

Here s denotes the arclength parameter and 6(s) is the argument of # at the
point x(s) of the curve. We note also that the area m(A), using integration
by parts, can be expressed as an integral over the scalar product of the posi-
tion vector x and the normal #, the so-called support function p(s) = —

Lx(s), #(s)Y, ie.
L
m(A) = —é—j; p(s)ds.

Proposition (see [5]). Let I' be an arbitrary closed, convex, embedded
C*-curve with curvature k and let the surface energy demsity f be in C? and
t-periodic. Then L a0 ()? W

a(0(s s m
® L S5m0 25 2 ey BAD-
Moreover equality holds if and only if ' = 0W,. Hervea = (f" + f) f

As we would like to make the proof self-contained, we give the simple
derivation of an important identity used below to calculate the isoperimetric
quantities of selfsimilar curves, and we also give a lemma on the one to one
correspondance of Wulff-shapes and their generating functions.

Lemma 1. Let I' be an arbitrary closed, convex, embedded C*-curve with
curvature k and let the surface energy demsity f be in C* with a = (f” + f) f
and allowing a Wulff-shape. Then

p(s)

L
(4) FD) = fo iy aOE) k($ds.

Proof. Inserting <x’, x> = 1 in the definition of F,(I") and integrating
by parts we have

L
F D = — fo CFOE) T (), 2()D ds
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L L
= = [ 10k <its), 2>ds+ [ £/06) <G, 7)) ds,
due to 7 = k# and <#, x’> = 0. Another integration by parts yields
L
F.) = — j; (f(8()) + 70Nk (s) <hils), x(s)>ds

L
= [ kpds.

Lemma 2. Let f, € C2(D), f/+ f>0,i=1,2, and let the Wulff-
shapes generated by f, and f, be identical, i.e. W, = W,. Then f; = f,.

Proof. This follows from elementary facts from convex analysis (see for
instance [11]). Define

fi(@ =1ql f,(6(g)) for g € R
Here 6(q) denotes the argument of ¢. If f/+ f, > 0, then f, is a convex func-
tion (see e.g. [8], Appendix B). Moreover the complex conjugate of f_,.
g™ := sup Kq, ¢ — f.(
qe
equals an indicator function of W, i.e.
fig" = {O’ ifq" € W,
o, otherwise

Thus f;k =f:k by the assumption, and so also f_;k* =f—;k* holds. But as the
f,. are convex, the second conjugate equals the function itself, which means
h=1e

Proof of the uniqueness result. Suppose there are two solutions, so (1),
and consequently two decompositions of a(6)

a(®) = (f/(6) + £,(®) f,(6), i=1,2.

Now'let I" be any selfsimilar solution of V = a(6)k. Then I solves
(5) p(s) = — Lx(s), #(s)> = a(6(s))k(s).
By Lemma 1 and the Gage inequality

R a8())’k(s)? m(W,)
F 0 = [ 766 % 2 e n FnD-

But the area of I' is given by
. 1 L 1 2
mintD) =5 [ a6k ds =5 [ a@)ds = mw,).

Therefore equality holds in the Gage inequality, which is only possible for
I' = W,. Using Lemma 2 we immediately conclude f; = f,.

Remarks. (i) The problem (1) was also studied in [5] and [7]. However,
they have to assume that @ is smooth in order to study a related parabolic
partial differential equation. Our proof is more direct and requires only
boundedness of a(f).

(ii)) Another proof of the uniqueness can be given: Suppose there exist
two. different solutions f and # to (1), the corresponding curves denoted by
I'; and I, respectively. Regard f as the new surface energy density. Similar
to the above argument one can show that both curves minimize the
isoperimetric quantity F,(IN* — 4m(W,)m(int I'). So by the Wulff-theorem
(in case of curves see for instance [1]) they both must be W, Thus I, = I
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and ¥ = f.

Although quite similar to the proof given before, this proof makes use of
a highly nontrivial result, the Wulff-theorem, whereas the other one uses
simple convex analysis instead.
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