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54. On the Logarithmic Gradient of Poincar Metric

By Huang XINZHONG *) and Shigeyoshi OWA* *)

(Communicated by Kiyosi IT0, M. J. A., Sept. 12, 1994)

1. Introduction. Let c c be a simply connected domain with at
least two boundary points and let f(z) be a conformal mapping of - {z:
zl < 1} onto . The poincare metric of is defined by
() (f(z)) f’(z) 2(z) 1/(1 --Iz
This definition is independent of the choice of conformal mapping and
because of this convenient choices available. Namely, let w and choose
the conformal mapping so that f(0) w. Then
(2) (w) /[ f’(o) I.
If f(z) is a conformal mapping of a domain f onto t’hen, from (1) and (2),
we have
(3) 2(f(z))[f’(z)[-- 2’(z), z
Given z , let d(z, ) denote the distance from z to 8, it is well-known
that
(4) 1/4
Osgood proved in [1l the following

Theorem A. If c 7 is simply connected and iff is analytic and univa-
lent in then
(5) f"(z)/f’(z)

_
for all z . The inequality is sharp.

Theorem B. If is a proper subdomain of and iff is analytic and uni-
valent in then
(6) f"(z)/f’(z)l_ 4/d(z, ), z
The inequality is sharp in the sense that the equality holds for and

f(z) z/(1 z)
Our Theorem 1 generalizes the above Theorems A and B, which reveals

the relationship of (5) and (6).
Theorem 1. If is simply connected domain with at least two bound-

ary points and f(z) is analytic and univalent in then

f" (z) 4
(7) f’(z) d(z, ) (4 /d(z, 8)2(z) 2d(z, 8)2(z) 1)

for all z , and the inequality is sharp.
For a differentiable function u we shall use the familiar operator

u= (u-- iu)/2, z= x + iy.
If w ----f(z) is a confovmal mapping of a domain f onto then from (3)
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(8) log f+ 1og[f’l log a.
Differentiating with respect to z and using the chain rule leads to
(9) ((log 2)wof) f" + f"/2f" (log 29) z.

This relation also holds in the case when and f is analytic covering
map onto a multiply connected domain. When is simply connected, Osgood
also estimated for 117log 1 21 (log 2)z and obtained the following

Theorem C. If is simply connected then
(1 O) V log 2(z)

_
4(z),

(11) [F’log2(z)
_

4/3d(z, )
for all z . Both inequalities are sharp.

Osgood commented that the extremal cases in Theorem C are quite diffe-
rent and neither inequality implies the other, this is true despite the sharp
relations (4) between the Poincar6 metric and the distance to the boundary.
Moreover, there are some works concerning with the estimate of Poincar6
metric (see, for example, [2] and [3]). Our second result shows that there is
indeed some relationship between (10) and (11), it can be unified into an

inequality, and (10), (11) are the special cases of it. We prove that
Theorem 2. If c is simply connected then

4
(12) 1171og (z) - d(z, ) (4 /d(z, 8)(z) 3d(z, 8)2(z) 1)

for all z and the inequality is sharp.
Remark. Inequalities (10) and (11) in Theorem C also can be derived

from Theorem 2.
In the case of multiply connected domain, Osgood proved that
Theorem D. If is any domain then

(13) 117log (z) - 2/d(z, )
for all z .

Osgood remarked that it is an open question whether the constant 2 in
(13) is sharp, but he showed that the constant 2 can not in general be
replaced by 4/3. In this case we prove that

Theorem 3. If c is any domain then there is a constant a > 0 such
that
(14) 117log 2(z) - a/d(z, )
for all z where 1.425 < a

_
2.

2. The proofs of results. We need the following Theorem E, see [4] for
the proof.

Theorem E. Let d, 1/4

_
d

_
1, denote the class of functions f(z) z

q- azzz q- regular and univalent in where d infla ], f (z) :/: a in the
unit disk. Then

2
a(d) max {[ a [} (1 /-d) (3 (d 1).

The proof of Theorem 1. Fix z f and choose a conformal mapping g
of onto f with g(O) z. Then fog is a conformal mapping of onto
f(f). Let T(z) =f"(z)/f’(z), we have T o,(W) T,(e(w>>e’(w) +
T(w) and
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(z) oe)" (o) (o)
(o)- g’<o)"

Hence,

(zh) d (z ) f (z)
g’f’(z) (0) 4d(z, o) + d(z, 8D) g’(0)

Let F(w) (g(w) z)/g’(O), then F(w) is a conformal mapping in , and
F’(0)- 1--F(0)--0, it is easily to see that dR(0, 8F()): d(z, )/
g’(0) I, F"(0) g"(O)/g’(O), thus, by Theorem E, we have

d(z, cao) lg"(O)/g’(O) dR(O, oF()) lg’(O)F"(o)_
4 g’(0) (1 v/dr(0, OF($))) (3 v/dr(0, cgF(B)) 1)

4
/l(z) (4 v/d(zi O)2(z) 3d(z, O)(z) 1),

which combined with (15), implies (7).
The equality in (7) holds, because for every d, , > 0 with 1/4

_
d,_

1, there exist a domain , a function f and z such that (z)
and d(z, 0) d. To show this, let be a conformal mapping of onto
then To(0) - 2(/((0))d((0), 0)) with q}(t) 2(1 v/)(3 v- 1)/t.
Therefore, for every d,/ > 0 with 1/4

_
d

_
1, there exist a domain

and a conformal mapping h satisfying (h(0)) ,, d(h(O), ) d, and
Th(O) 2(2(h(O))d(h(O), 0)). If we choose conformal mappings g of
onto so that Tg(0) 2(d), ,(g(0)) , and d(g(O), 0) d, and h

-1
of onto ’ so that Th(O) --4, then f---- hog which maps onto
satisfies g’(0) Ti(g(0)) Th(O) Tg(0) 4-- 2q(d,). So if we set
g(0) z, then we have Ti(z) -"/(z) (4 + 2(d,)), ,(z) --/ and d(z,

d, which is (7) with equality. This completes the proof of Theorem 1.
Remark. It is easy to see that Theorem 1 is a generalization of

Theorems A and B.
The proof of Theorem 2. Fix z let w f(t) is the conformal map-

ping of onto such that f(0)--z. Then, from (9), we have 2
[(log,(f(t))) [--’--[f"(o)/f’(o)l[ 1/f’(0)[. To estimate the value of
d(z, we consider the function F(t)
(f (f) z)/ f’(O) t 4- at 4- let 85= F(8) we get d(z, )
d(O, c$)lf’(O)I, and then d(f(O), )I 1/f’(o)I f"(o)/f’(o)l- 2d(0,
35) [ae I, by Theorem E, we obtain
d(z, )[ 1/f’(0)[ f"(O)/f’(o)l - 4(1 v/d(0, 8))(3 v/d(0,$) 1)

4(1 /d(z, ig)2(z)) (3 /d(z, O)2(z) 1)
4(4 /d(z, 8)2(z) 3d(z, c)2(z) 1).

The extremal function fd(z) given in Theorem E makes the inequality (12)
becomes to equality for fd() and z 0, thus (12) is sharp.

Remark. Let y-- d(z, 3),(z), then 1/4

_
y

_
1, and put F(y)

4 3y 1, it is easy to find that F(y)

_
F(4/9) 1/3. Therefore, we

derive I71og/(z) - 4/3d(z, o), z - . Moreover, putting (12) into the
following

117log/l(z) - 42(z) (v/1/d(z, cg)2(z) 3 1/d(z, O)/(z)),
and let y 1/d(z, )2(z), then 1

_
y

_
4. For the function F(y)--
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4 V/ 3 y, we have F(y)

_
F(4) 1, thus we again obtain ]I7 log/](z)_

42(z), z . This gives that Theorem 2 generalizes Theorem C.
Now we will give an application of Theorem 2. If is simply connected

and 7 is a hyperbolic geodesic in , let t and th denote the euclidean and
hyperbolic curvatures of 7, the relation between te and tch at any point Zo
7 is that
(16) /17 2tCh + 0 log 2 /On
where 0/0n is the derivative in the normal direction at the point z0 7" (see
[1], p. 455). Then by (12) and (16),
tee (z) 0 log 2 (z)/ On

_
17 log 2 (z)
4

d(z, 0) (4v/d(z’ 0)2.(z) --3d(z, O)/2(z) -1)

for z 7". At points where tce(z) 4: 0,
1/Xe(Z)

_
d(z, OD)/4(4v/d(z, 0)2(z) 3d(z, 0)/2(z) 1)

_
3d(z, 0)/4,

thus, the euclidean circle of curvature to 9" at z actually protrudes quite far
over 0, and it also has deep relation with d(z, 059)2(z). Hence (12) is
also sharp form of Jrgensen’s [5] result in the simply connected case.

The proof of Theorem 3. Let i be the image domain of x__
_

{0} under f(z) 1/2(z + 1/z), it is shown in [6] that 2(z) 1/21zl
log(1/I z I), and we calculate, from (9), that
((log 2)of(z)) f’ (z) + f" (z)/2f’ (z) (log 2(z))

1/2z+ 1/2zlog(1/lz
Thus we have

2( f "(z) 1, 1 )2 ((log ),,,of(z)) f Z-(z) -f,--) 2z 2z log(1/i z [)
Let z = ir, 0 < r < 1, we find that d(f(ir), 0) (l/r-- r)/2 and

d(f(ir), O) ITlog2(f(ir))
2r(1--r) [ 1 1 1

I + r r(1 + r) 2r 2rlog(1/r) ]"

Let r 1/2e, we get d(f(i/2e), 0) 17log 2(f(i/2e)) 1.4253363.
This shows that the constant a in Theorem 3 must be in 1.4253363

_
a

_
2.
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