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(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1994)

This is a continuation of my preceding paper [1] which will be referred
to as (I) in this paper. In (I), to each parameter t (a, b, c), we associated a
pair (Et, 7rt) of an elliptic plane curve and a point on it. In this paper, we
shall find an elliptic space curve C in a fibre of the map t E so that the
map t - 7r is an isogeny" C---* E Et, t C. As in (I), this paper will con-
tain an assertion on the Mordell-Weil group E(k) when k is a number field.

1. Space T. Let k be a field of characteristic :/: 2 and k be the
algebraic closure of k. Let l(t), m re(t), n n(t) be independent

klinear forms on the vector sPace Our parameter space is defined by
(1.1) T- {t,/3; (1

._
m)(m2_ n2)(n2_ l ) 4= 0}.

For each t T, put
P,= (1- n) + (m n),
Qt (1 n2) (m- n2)

(.2)
(.3)
Then we have
(.4) P-4Q,= (12- m2).
By the definition of T, we obtain elliptic curves

3(1.5) Et" y x + Px + Qtx
x(x (n l) (x (n m) t T.

One verifies easily that
(1.6) rc= (n lmn) E, t T

If forms l, m, n have coefficients in k and if t T(k) T (3 k, then
the elliptic curve Et is defined over k and rrt Et(k) Et fl k.
(1.7) Example. If we put l(t) (b + a)/2, re(t) (b- a)/2, n(t) c/2,
for t (a, b, c) T, then we find ourselves in the situation of (I): Pt
(a2-F b c)/2, Q (a q- b + c) (a -F b-- c) (a-- b q- c) (a b c)/16

)and zrt (c/4, c(b2- a /8).
(1.8) Example. In 2 we shall meet the simplest ,situation where l(t) a,
re(t) b, n(t) c. In this case, we have P a -+- b2- 2c Qt (a-c) (b2- c) and zr-- (c abc)

Back to general 1, m, n, we shall consider the equivalence relation in T
defined by
(1.9) tN t’<=*E= Ev, t, t’ T.
In other words,
(1.10) t t’<=>Pt=Pv, Q= Qv, t, t’ T.
Now call to a point in T fixed once for all and consider the class F contain-
ing to:
(1.11) F= {t T t to}.
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Since E Eto for t F, the points r in (1.6) induces obviously a map"

(1.12) zc F-- E Eto.
2. Structure of F. Let to be a point in T fixed once for all. We set

M l(to) 2n (to) N m to) n (to)
Notice that M 0, N 0 and M 4: N in view of (1.1). Furthermore, by
(1.2), (1.3), (1.5), (1.9), (1.10), we obtain, for t e T,

-)(2.1) t F <=> (l2 n) -+- (m n M -+- N and
(12- n) (m- n2) MN.

The right-hand side of (2.1) amounts to
(2.2) (l 2 )--n, m --n (M, N) or (N,M)
In other words, e have

(2.3)
n+N= m

r
n+M=m.

In general, for M, N k such that M 0, N 4: 0, M N, put
2 2(2.4) E(M, N) (x Pa(/) Xo + Mx x., Xo + Nx xa}.

It is well-known in elementary algebraic geometry that (2.4) is an elliptic
curve with the origin 0 (1, 0, 1, 1), defined over k whenever M, N k
(see, e.g., [2] Chapter 4). Therefore if we denote by E(M, N)o the affine part
of E(M,N), i.e., the subset of E(M,N) consisting of points x=
(xo, 1, x2, x), then we find that
(2.5) CF {, t T, t to} E(M, N) o E(N, M) o,

with E(M, N)o E(N, M)o 0, M l(to)- n(to) N m(to) n(to)
where we called the matrix in GL(k) determined by

(2.6) = re(t) t T.
n(t)

Map 7r. Suggested by (2.5), consider an algebraic set Co in de-3.
fined by
(3.1) CO q)-(E(M, N)o) {t ;n + M l, n + N m}.
Since Co is a subset of F by (2.5) the map 7r in (1.12) induces a morphism 7ro

Co--* E Eto defined by Zro(t) 7rt (n2, lmn) (cf. (1.6)). Now denote by
C the projective completion of Co"
(3.2) C {P P(/) ;n + Mx l, n + Nx m},
where P (Xo, x, x2, xa), 1 l(xo, x., x), m m(Xo, x2, x), n n(xo,

x2, x). Of course C . E(M, N) over k. The affine morphism zro extends to
a projective morphism
(3.3) rc C-- E Eto
so that
(3.4) 7r (P) (nx, lmn, x) E P2(k),
with l(xo, x2, xa), etc. As an origin of the elliptic curve C we choose

Oc (eo, 0, e2, e) such that

e. 1

ea 1
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Then we have n’*(Oc) Oe (0, 1, 0). One verifies easily that Ker 7r

Z/2 x Z/2Z. Therefore 7r* is an isogeny and we see that the map
F-- E is surjective.

4. Number fields. Notation being as before, let us assume that the
linear forms l, m, r have coefficients in k and the point to belongs to T(k).
Then GLa(k), M, N k, elliptic curves C, E Eto are defined over.
k and so are the isogeny rr in (3.3) and the map 7r" F---* E in (1.12).

Assume now that k is a number field; hence k c Q. Then the isogeny
n" C---" E-- Eto and its inverse isogeny E--* C (both defined over k, as

easily verified) induce homomorphisms C(k) E(k)of finitely generated
abelian groups, with finite kernels; hence rank C(k)= rankE(k)and we

have
(4.1) [E(k) 7r*(C(k))] < +
Since Co(k) F(k), it follows at once from (4.1) that the subgroup of
E(k) generated by 7r(F(k)) is of finite index in E(k).

Summing up, we obtain

3Theorem. Let k be a number field, 1 m n independent linear forms on

with coefficients in k, T the subset of formed by points t such that
(l(t) re(t) ) (re(t) 2 ) .)n(t) (n(t) l(t) :/: 0

and Et, t T, the elliptic curve in P(O,) defined (affinely) by
E,’y x(x- (n(t) l(t) ) (x- (n(t) -re(t) ).

For a point t T(k), let
F (to T;E, Eto},

this being an algebraic set defined over k. Let 7r be the map F--* E Eto de-

fined by
7r(t) (n(t) l(t)m(t)n(t))

Then the group generated by the set 7r(F(k)) E(k) is of finite index in the
Morde l- Wei group E(k)
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