51. Triangles and Elliptic Curves. II

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1994)

This is a continuation of my preceding paper [1] which will be referred to as (I) in this paper. In (I), to each parameter t = (a, b, c), we associated a pair (E_t, π_t) of an elliptic plane curve and a point on it. In this paper, we shall find an elliptic space curve C in a fibre of the map $t \mapsto E_t$ so that the map $t \mapsto \pi_t$ is an isogeny: $C \to E = E_t$, $t \in C$. As in (I), this paper will contain an assertion on the Mordell-Weil group E(k) when k is a number field.

§1. Space T. Let k be a field of characteristic $\neq 2$ and \bar{k} be the algebraic closure of k. Let l = l(t), m = m(t), n = n(t) be independent linear forms on the vector space \bar{k}^3 . Our parameter space is defined by (1.1) $T = \{t \in \bar{k}^3 ; (l^2 - m^2)(m^2 - n^2)(n^2 - l^2) \neq 0\}.$

$$(1.1) T = \{t \in \bar{k}^3 : (l^2 - m^2)(m^2 - n^2)(n^2 - l^2) \neq 0\}.$$

For each $t \in T$, put

(1.2)
$$P_{t} = (l^{2} - n^{2}) + (m^{2} - n^{2}),$$
(1.3)
$$Q_{t} = (l^{2} - n^{2})(m^{2} - n^{2}).$$

$$(1.3) Q_t = (l^2 - n^2) (m^2 - n^2).$$

Then we have

$$(1.4) P_t^2 - 4Q_t = (l^2 - m^2)^2.$$

By the definition of
$$T$$
, we obtain elliptic curves
$$(1.5) E_t: y^2 = x^3 + P_t x^2 + Q_t x$$

$$= x(x - (n^2 - l^2))(x - (n^2 - m^2)), \quad t \in T.$$

One verifies easily that

(1.6)
$$\pi_t = (n^2, lmn) \in E_t, \quad t \in T.$$

If forms l, m, n have coefficients in k and if $t \in T(k) = T \cap k^3$, then the elliptic curve E_t is defined over k and $\pi_t \in E_t(k) = E_t \cap k^2$.

- (1.7) **Example.** If we put l(t) = (b + a)/2, m(t) = (b a)/2, n(t) = c/2, for $t = (a, b, c) \in T$, then we find ourselves in the situation of (I): $P_t =$ $(a^2 + b^2 - c^2)/2$, $Q_t = (a + b + c)(a + b - c)(a - b + c)(a - b - c)/16$ and $\pi_t = (c^2/4, c(b^2 - a^2)/8)$.
- (1.8) **Example.** In §2 we shall meet the simplest situation where l(t) = a, m(t) = b, n(t) = c. In this case, we have $P_t = a^2 + b^2 - 2c^2$, $Q_t = (a^2 - b^2)$ $(c^2)(b^2-c^2)$ and $\pi_t=(c^2, abc)$.

Back to general l, m, n, we shall consider the equivalence relation in Tdefined by

$$(1.9) t \sim t' \Leftrightarrow E_t = E_{t'}, \quad t, t' \in T.$$

In other words,

$$(1.10) t \sim t' \Leftrightarrow P_t = P_{t'}, \quad Q_t = Q_{t'}, \quad t, \, t' \in T.$$

Now call t_0 a point in T fixed once for all and consider the class F containing t_0 :

$$(1.11) F = \{ t \in T ; t \sim t_0 \}.$$

Since $E_t = E_{t_0}$ for $t \in F$, the points π_t in (1.6) induces obviously a map: $\pi: F \to E = E_{t_0}$. (1.12)

§2. Structure of F. Let t_0 be a point in T fixed once for all. We set $M = l(t_0)^2 - n(t_0)^2, N = m(t_0)^2 - n(t_0)^2.$

Notice that $M \neq 0$, $N \neq 0$ and $M \neq N$ in view of (1.1). Furthermore, by (1.2), (1.3), (1.5), (1.9), (1.10), we obtain, for $t \in T$,

(2.1)
$$t \in F \Leftrightarrow (l^2 - n^2) + (m^2 - n^2) = M + N \text{ and } (l^2 - n^2)(m^2 - n^2) = MN.$$

The right-hand side of (2.1) amounts to

$$(2.2) (l2 - n2, m2 - n2) = (M, N) or = (N, M).$$

In other words, we have

(2.3)
$$\begin{cases} n^2 + M = l^2 \\ n^2 + N = m^2 \end{cases} \text{ or } \begin{cases} n^2 + N = l^2 \\ n^2 + M = m^2 \end{cases}$$

In general, for M , $N \subseteq \bar{k}$ such that $M \neq 0$, $N \neq 0$, $M \neq N$, put

$$(2.4) E(M, N) = \{x \in P^3(\bar{k}) ; x_0^2 + Mx_1^2 = x_2^2, x_0^2 + Nx_1^2 = x_3^2\}.$$

It is well-known in elementary algebraic geometry that (2.4) is an elliptic curve with the origin 0 = (1, 0, 1, 1), defined over k whenever $M, N \in k$ (see, e.g., [2] Chapter 4). Therefore if we denote by $E(M, N)_0$ the affine part of E(M, N), i.e., the subset of E(M, N) consisting of points x = $(x_0, 1, x_2, x_3)$, then we find that

(2.5) $\Phi F = {\Phi_t; t \in T, t \sim t_0} = E(M, N)_0 \cup E(N, M)_0,$ with $E(M, N)_0 \cap E(N, M)_0 = \emptyset, M = l(t_0)^2 - n(t_0)^2, N = m(t_0)^2 - n(t_0)^2,$ where we called Φ the matrix in $GL_3(\bar{k})$ determined by

(2.6)
$$\Phi_t = \begin{pmatrix} \mathring{l}(t) \\ m(t) \\ n(t) \end{pmatrix}, \quad t \in T.$$

§3. Map π . Suggested by (2.5), consider an algebraic set C_0 in \bar{k}^3 defined by

 $(3.1) \quad \overset{\cdot}{C_0} = \Phi^{-1}(E(M, N)_0) = \{t \in \overline{k}^3 ; n^2 + M = l^2, n^2 + N = m^2\}.$

Since C_0 is a subset of F by (2.5) the map π in (1.12) induces a morphism π_0 : $C_0 \to E = E_{t_0}$ defined by $\pi_0(t) = \pi_t = (n^2, lmn)$ (cf. (1.6)). Now denote by C the projective completion of C_0 : (3.2) $C = \{P \in P^3(\bar{k}) : n^2 + Mx_1^2 = l^2, n^2 + Nx_1^2 = m^2\},$

where $P = (x_0, x_1, x_2, x_3)$, $l = l(x_0, x_2, x_3)$, $m = m(x_0, x_2, x_3)$, $n = n(x_0, x_2, x_3)$ x_2 , x_3). Of course $C \approx E(M, N)$ over \bar{k} . The affine morphism π_0 extends to a projective morphism

$$\pi^*: C \to E = E_{t_0}$$

so that

(3.4)
$$\pi^*(P) = (n^2 x_1, lmn, x_1^3) \in E \subset P^2(k),$$

with $l = l(x_0, x_2, x_3)$, etc. As an origin of the elliptic curve C we choose $O_C = (e_0, 0, e_2, e_3)$ such that

$$\Phi\begin{pmatrix}e_0\\e_2\\e_2\end{pmatrix}=\begin{pmatrix}1\\1\\1\end{pmatrix}.$$

Then we have $\pi^*(O_c) = O_E = (0, 1, 0)$. One verifies easily that $\operatorname{Ker} \pi^* \approx$ $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Therefore π^* is an isogeny and we see that the map π : $F \rightarrow E$ is surjective.

§4. Number fields. Notation being as before, let us assume that the linear forms l, m, n have coefficients in k and the point t_0 belongs to T(k). Then $\Phi \in GL_3(k)$, M, $N \in k$, elliptic curves C, $E = E_{t_0}$ are defined over k and so are the isogeny π^* in (3.3) and the map $\pi : F \to E$ in (1.12).

Assume now that k is a number field; hence $k \subseteq \bar{Q}$. Then the isogeny $\pi^*: C \to E = E_{t_0}$ and its inverse isogeny $E \to C$ (both defined over k, as easily verified) induce homomorphisms $C(k) \rightleftharpoons E(k)$ of finitely generated abelian groups, with finite kernels; hence rank $C(k) = \operatorname{rank} E(k)$ and we have

$$[E(k): \pi^*(C(k))] < + \infty.$$

Since $C_0(k) \subset F(k)$, it follows at once from (4.1) that the subgroup of E(k) generated by $\pi(F(k))$ is of finite index in E(k).

Summing up, we obtain

Theorem. Let k be a number field, l, m, n independent linear forms on \bar{Q}^3 with coefficients in k, T the subset of \bar{Q}^3 formed by points t such that $(l(t)^2 - m(t)^2)(m(t)^2 - n(t)^2)(n(t)^2 - l(t)^2) \neq 0$

$$(l(t)^{2} - m(t)^{2}) (m(t)^{2} - n(t)^{2}) (n(t)^{2} - l(t)^{2}) \neq 0$$

and E_t , $t \in T$, the elliptic curve in $P^2(\bar{Q})$ defined (affinely) by $E_t: y^2 = x(x - (n(t)^2 - l(t)^2))(x - (n(t)^2 - m(t)^2)).$

$$E_t: y^2 = x(x - (n(t)^2 - l(t)^2))(x - (n(t)^2 - m(t)^2))$$

For a point $t \in T(k)$, let

$$F = \{t_0 \in T ; E_t = E_{t_0}\},\,$$

this being an algebraic set defined over k. Let π be the map $F \to E = E_{t_0}$ defined by

$$\pi(t) = (n(t)^2, l(t)m(t)n(t)).$$

Then the group generated by the set $\pi(F(k)) \subset E(k)$ is of finite index in the Mordell-Weil group E(k).

References

- [1] Ono, T.: Triangles and elliptic curves. Proc. Japan. Acad., 70A, 106-108 (1994).
- [2] ---: Variations on a Theme of Euler. Plenum, New York (to appear).
- [3] Silverman, J. H.: The Arithmetic of Elliptic Curves. Springer, New York (1986).