51. Triangles and Elliptic Curves. II

By Takashi ONO
Department of Mathematics, The Johns Hopkins University, U. S. A.
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1994)

This is a continuation of my preceding paper [1] which will be referred to as (I) in this paper. In (I), to each parameter $t=(a, b, c)$, we associated a pair $\left(E_{t}, \pi_{t}\right)$ of an elliptic plane curve and a point on it. In this paper, we shall find an elliptic space curve C in a fibre of the map $t \mapsto E_{t}$ so that the map $t \mapsto \pi_{t}$ is an isogeny: $C \rightarrow E=E_{t}, t \in C$. As in (I), this paper will contain an assertion on the Mordell-Weil group $E(k)$ when k is a number field.
§1. Space T. Let k be a field of characteristic $\neq 2$ and \bar{k} be the algebraic closure of k. Let $l=l(t), m=m(t), n=n(t)$ be independent linear forms on the vector space \vec{k}^{3}. Our parameter space is defined by

$$
\begin{equation*}
T=\left\{t \in \bar{k}^{3} ;\left(l^{2}-m^{2}\right)\left(m^{2}-n^{2}\right)\left(n^{2}-l^{2}\right) \neq 0\right\} \tag{1.1}
\end{equation*}
$$

For each $t \in T$, put

$$
\begin{gather*}
P_{t}=\left(l^{2}-n^{2}\right)+\left(m^{2}-n^{2}\right), \tag{1.2}\\
Q_{t}=\left(l^{2}-n^{2}\right)\left(m^{2}-n^{2}\right) . \tag{1.3}
\end{gather*}
$$

Then we have

$$
\begin{equation*}
P_{t}^{2}-4 Q_{t}=\left(l^{2}-m^{2}\right)^{2} . \tag{1.4}
\end{equation*}
$$

By the definition of T, we obtain elliptic curves

$$
\begin{align*}
E_{t}: y^{2} & =x^{3}+P_{t} x^{2}+Q_{t} x \tag{1.5}\\
& =x\left(x-\left(n^{2}-l^{2}\right)\right)\left(x-\left(n^{2}-m^{2}\right)\right), \quad t \in T .
\end{align*}
$$

One verifies easily that

$$
\begin{equation*}
\pi_{t}=\left(n^{2}, \operatorname{lm} n\right) \in E_{t}, \quad t \in T . \tag{1.6}
\end{equation*}
$$

If forms l, m, n have coefficients in k and if $t \in T(k)=T \cap k^{3}$, then the elliptic curve E_{t} is defined over k and $\pi_{t} \in E_{t}(k)=E_{t} \cap k^{2}$.
(1.7) Example. If we put $l(t)=(b+a) / 2, m(t)=(b-a) / 2, n(t)=c / 2$, for $t=(a, b, c) \in T$, then we find ourselves in the situation of (I): $P_{t}=$ $\left(a^{2}+b^{2}-c^{2}\right) / 2, \quad Q_{t}=(a+b+c)(a+b-c)(a-b+c)(a-b-c) / 16$ and $\pi_{t}=\left(c^{2} / 4, c\left(b^{2}-a^{2}\right) / 8\right)$.
(1.8) Example. In §2 we shall meet the simplest situation where $l(t)=a$, $m(t)=b, n(t)=c$. In this case, we have $P_{t}=a^{2}+b^{2}-2 c^{2}, Q_{t}=\left(a^{2}-\right.$ $\left.c^{2}\right)\left(b^{2}-c^{2}\right)$ and $\pi_{t}=\left(c^{2}, a b c\right)$.

Back to general l, m, n, we shall consider the equivalence relation in T defined by

$$
\text { (1.9) } \quad t \sim t^{\prime} \Leftrightarrow E_{t}=E_{t^{\prime}}, \quad t, t^{\prime} \in T
$$

In other words,

$$
\begin{equation*}
t \sim t^{\prime} \Leftrightarrow P_{t}=P_{t^{\prime}}, \quad Q_{t}=Q_{t^{\prime}}, \quad t, t^{\prime} \in T . \tag{1.10}
\end{equation*}
$$

Now call t_{0} a point in T fixed once for all and consider the class F containing t_{0} :

$$
\begin{equation*}
F=\left\{t \in T ; t \sim t_{0}\right\} \tag{1.11}
\end{equation*}
$$

Since $E_{t}=E_{t_{0}}$ for $t \in F$, the points π_{t} in (1.6) induces obviously a map: (1.12)

$$
\pi: F \rightarrow E=E_{t_{0}}
$$

§2. Structure of \boldsymbol{F}. Let t_{0} be a point in T fixed once for all. We set $M=l\left(t_{0}\right)^{2}-n\left(t_{0}\right)^{2}, N=m\left(t_{0}\right)^{2}-n\left(t_{0}\right)^{2}$.
Notice that $M \neq 0, N \neq 0$ and $M \neq N$ in view of (1.1). Furthermore, by (1.2), (1.3), (1.5), (1.9), (1.10), we obtain, for $t \in T$,

$$
\begin{align*}
t \in F \Leftrightarrow & \left(l^{2}-n^{2}\right)+\left(m^{2}-n^{2}\right)=M+N \text { and } \tag{2.1}\\
& \left(l^{2}-n^{2}\right)\left(m^{2}-n^{2}\right)=M N
\end{align*}
$$

The right-hand side of (2.1) amounts to

$$
\begin{equation*}
\left(l^{2}-n^{2}, m^{2}-n^{2}\right)=(M, N) \text { or }=(N, M) \tag{2.2}
\end{equation*}
$$

In other words, we have

$$
\left\{\begin{array} { l }
{ n ^ { 2 } + M = l ^ { 2 } } \tag{2.3}\\
{ n ^ { 2 } + N = m ^ { 2 } }
\end{array} \text { or } \left\{\begin{array}{l}
n^{2}+N=l^{2} \\
n^{2}+M=m^{2}
\end{array}\right.\right.
$$

In general, for $M, N \in \bar{k}$ such that $M \neq 0, N \neq 0, M \neq N$, put

$$
\begin{equation*}
E(M, N)=\left\{x \in P^{3}(\bar{k}) ; x_{0}^{2}+M x_{1}^{2}=x_{2}^{2}, x_{0}^{2}+N x_{1}^{2}=x_{3}^{2}\right\} \tag{2.4}
\end{equation*}
$$

It is well-known in elementary algebraic geometry that (2.4) is an elliptic curve with the origin $0=(1,0,1,1)$, defined over k whenever $M, N \in k$ (see, e.g., [2] Chapter 4). Therefore if we denote by $E(M, N)_{0}$ the affine part of $E(M, N)$, i.e., the subset of $E(M, N)$ consisting of points $x=$ $\left(x_{0}, 1, x_{2}, x_{3}\right)$, then we find that
(2.5) $\quad \Phi F=\left\{\Phi_{t} ; t \in T, t \sim t_{0}\right\}=E(M, N)_{0} \cup E(N, M)_{0}$,
with $E(M, N)_{0} \cap E(N, M)_{0}=\emptyset, M=l\left(t_{0}\right)^{2}-n\left(t_{0}\right)^{2}, N=m\left(t_{0}\right)^{2}-n\left(t_{0}\right)^{2}$, where we called Φ the matrix in $G L_{3}(\bar{k})$ determined by

$$
\Phi_{t}=\left(\begin{array}{c}
l(t) \tag{2.6}\\
m(t) \\
n(t)
\end{array}\right), \quad t \in T
$$

§3. Map π. Suggested by (2.5), consider an algebraic set C_{0} in \bar{k}^{3} defined by
(3.1) $\quad C_{0}=\Phi^{-1}\left(E(M, N)_{0}\right)=\left\{t \in \bar{k}^{3} ; n^{2}+M=l^{2}, n^{2}+N=m^{2}\right\}$.

Since C_{0} is a subset of F by (2.5) the map π in (1.12) induces a morphism π_{0} : $C_{0} \rightarrow E=E_{t_{0}}$ defined by $\pi_{0}(t)=\pi_{t}=\left(n^{2}, \operatorname{lm} n\right)$ (cf. (1.6)). Now denote by C the projective completion of C_{0} :

$$
\begin{equation*}
C=\left\{P \in P^{3}(\bar{k}) ; n^{2}+M x_{1}^{2}=l^{2}, n^{2}+N x_{1}^{2}=m^{2}\right\} \tag{3.2}
\end{equation*}
$$

where $\quad P=\left(x_{0}, x_{1}, x_{2}, x_{3}\right), l=l\left(x_{0}, x_{2}, x_{3}\right), m=m\left(x_{0}, x_{2}, x_{3}\right), n=n\left(x_{0}\right.$, x_{2}, x_{3}). Of course $C \approx E(M, N)$ over \bar{k}. The affine morphism π_{0} extends to a projective morphism

$$
\begin{equation*}
\pi^{*}: C \rightarrow E=E_{t_{0}} \tag{3.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\pi^{*}(P)=\left(n^{2} x_{1}, \operatorname{lm} n, x_{1}^{3}\right) \in E \subset P^{2}(k) \tag{3.4}
\end{equation*}
$$

with $l=l\left(x_{0}, x_{2}, x_{3}\right)$, etc. As an origin of the elliptic curve C we choose $O_{C}=\left(e_{0}, 0, e_{2}, e_{3}\right)$ such that

$$
\Phi\left(\begin{array}{l}
e_{0} \\
e_{2} \\
e_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Then we have $\pi^{*}\left(O_{C}\right)=O_{E}=(0,1,0)$. One verifies easily that $\operatorname{Ker} \pi^{*} \approx$ $\boldsymbol{Z} / 2 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$. Therefore π^{*} is an isogeny and we see that the map π : $F \rightarrow E$ is surjective.
§4. Number fields. Notation being as before, let us assume that the linear forms l, m, n have coefficients in k and the point t_{0} belongs to $T(k)$. Then $\Phi \in G L_{3}(k), M, N \in k$, elliptic curves $C, E=E_{t_{0}}$ are defined over k and so are the isogeny π^{*} in (3.3) and the map $\pi: F \rightarrow E$ in (1.12).

Assume now that k is a number field; hence $k \subset \overline{\boldsymbol{Q}}$. Then the isogeny $\pi^{*}: C \rightarrow E=E_{t_{0}}$ and its inverse isogeny $E \rightarrow C$ (both defined over k, as easily verified) induce homomorphisms $C(k) \rightleftarrows E(k)$ of finitely generated abelian groups, with finite kernels; hence rank $C(k)=\operatorname{rank} E(k)$ and we have

$$
\begin{equation*}
\left[E(k): \pi^{*}(C(k))\right]<+\infty . \tag{4.1}
\end{equation*}
$$

Since $C_{0}(k) \subset F(k)$, it follows at once from (4.1) that the subgroup of $E(k)$ generated by $\pi(F(k))$ is of finite index in $E(k)$.

Summing up, we obtain
Theorem. Let k be a number field, l, m, n independent linear forms on $\overline{\boldsymbol{Q}}^{3}$ with coefficients in k, T the subset of $\overline{\boldsymbol{Q}}^{3}$ formed by points t such that

$$
\left(l(t)^{2}-m(t)^{2}\right)\left(m(t)^{2}-n(t)^{2}\right)\left(n(t)^{2}-l(t)^{2}\right) \neq 0
$$

and $E_{t}, t \in T$, the elliptic curve in $P^{2}(\bar{Q})$ defined (affinely) by

$$
E_{t}: y^{2}=x\left(x-\left(n(t)^{2}-l(t)^{2}\right)\right)\left(x-\left(n(t)^{2}-m(t)^{2}\right)\right)
$$

For a point $t \in T(k)$, let

$$
F=\left\{t_{0} \in T ; E_{t}=E_{t_{0}}\right\}
$$

this being an algebraic set defined over k. Let π be the map $F \rightarrow E=E_{t_{0}}$ defined by

$$
\pi(t)=\left(n(t)^{2}, l(t) m(t) n(t)\right) .
$$

Then the group generated by the set $\pi(F(k)) \subset E(k)$ is of finite index in the Mordell- Weil group $E(k)$.

References

[1] Ono, T.: Triangles and elliptic curves. Proc. Japan. Acad., 70A, 106-108 (1994).
[2] -: Variations on a Theme of Euler. Plenum, New York (to appear).
[3] Silverman, J. H.: The Arithmetic of Elliptic Curves. Springer, New York (1986).

