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Abstract: It is the purpose of this paper to set down the relationship
between symmetry in the continued fraction expansion of a quadratic irra-
tional, and the number of ambiguous ideals in an associated class of the
class group of a real quadratic field. We also clear up some misconceptions
in the literature pertaining to ambiguous classes.

In what follows we will establish the equivalence between real quadratic
irrationals (with what we call pure symmetric period), and ambiguous classes
having at most one ambiguous ideal in the class group of a real quadratic
field. Although this should be well known, it is not set down anywhere in the
literature. Moreover, what is set down is often misleading or simply wrong.
We will point out some of these inaccuracies and set them straight.

First we need some background and notation.

Let D be a positive square-free integer and set

w=((—1++/D)/o
where 0 = 2 if D = 1(mod 4) and 0 = 1 otherwise. The discriminant 4 of
the real quadratic field K = Q(/D) is given by 4 = (2/0)*D. If [a, f]
denotes the module {ax + By : x, y € Z} then the maximal order (or ring of
integers) O, of K is [1, w]. The norm N(a) of @ € K is equal to aa’ where
a’ is the algebraic conjugate of . The class group of K is denoted by C,.

An ideal of O, can be written as I = [a, b + cw] where a, b, c €E Z
with @, ¢ >0, ¢| b, c|a, and ac| N(b + cw). Conversely, if a, b, c € Z
with ¢| b, ¢| a and ac| N(b + cw) then [a, b + cw] is an ideal of O,. In an
ideal I = [a, b + cw] with a, ¢ > 0 the norm of the ideal I, N(I) is given
by N(I) = ac > 0. If ¢ = 1 then [ is said to be a primitive ideal. The conju-
gate ideal of I=1[a, b+ wlis I’=[a, b+ »]. An ideal [ is called
reduced if it is primitive and does not contain any non-zero element & such
that both || < N(I), and | @’ | < N(I). The class of an ideal I in O, is de-
noted by {I}. For further details on the above, the reader is referred to [7].

At this juncture, we introduce continued fractions into the discussion.
Given a quadratic irrational v € K we may write y = (P + YD)/ Q where P,
Q € Z with @ # 0, and @ divides N(P + D). Furthermore,

r= <QO’ diy. .5 45 Ti+1>
denotes the continued fraction expansion of ¥ where

Tisn = Py +VD)/ Qs
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and
g = lrl,
P, = qQ '; P,
Q=D — P)/Q,
for1=20,1,2,...
Every such 7 is known to be eventually periodic; i.e.,
T = <Qm q],y e ooy Qi—-ly qn qi+1’ L ] ql—1>°
Furthermore, if 7 is reduced; i.e., v > 1 and — 1 < 7’ <0, then 7 is purely
periodic; i.e.,

T= <qo’ ql’- LR ql—1>
of period length Il. For further details on quadratic irrationals, the reader is
referred to [6, section 10.4, pp. 374-390].

Now we establish the beautiful connection between the ideal theory and
the theory of continued fractions. For proofs and further details the reader
is referred to [7].

Definition 1. To each quadratic irrational y = (P + vD)/Q there
corresponds the O,-ideal I = [Q/0o, (P + vD)/0] which we denote by
[yl =L

As a result of Definition 1, we say that 7 is reduced if [7] is reduced,
and we denote the period length of the continued fraction expansion of y by
I(y). Furthermore, the ideals [7,] = (Q,/0, (P, ++VD)/0g]l for 0<i<
1—1 (where I=1I(y)) are all the reduced ideals equivalent to [y] =
[7,] where P = P, and @ = Q,. Also, since I(y;,) = I(y) for all i with 0 < ¢
< I then we denote this common period by I(§) where € is the class of C,
containing [7].

Definition 2. If v = (P =4y/D)/Q is a reduced quadratic irrational
then 7 is said to have a purely periodic continued fraction expansion with
symmetry or we simply say that 7 has pure symmetric period if

7= doy Guye s Qiy?
where the word ¢,¢, * ** ¢,_, is a palindrome.

Now we prove a useful technical result which will allow us to establish
the equivalence between pure symmetry and certain ambiguous ideal classes.

Lemma 1. Let € be an ambiguous class of reduced ideals in Oy, then €
has at most one ambiguous ideal n it if and only if there exists a reduced ideal
I€ @ withI’=1,_, wherel = I(8).

Proof. If there is an ideal / € € with I’ = I,_, then D = P + Q) =
P} + Q% where I =1[Q,/0, (P, + vD)/0l. If there are 2 ambiguous ideals
in € (the most possible in any ambiguous class of reduced ideals) then, by
Theorem 3.4 of [5], [ is even and both @,/0 and @;,,/ 0 divide A. Moreover,
Q,/ 0 is square-free, being the norm of reduced ambiguous ideal. Since 4 =
4D/¢* = (2P,/0)* + (2Q,/0)® then, if Q,/0 indeed divides 4, then (Q,/0)’
divides 4 forcing Q,/0 =1 or 2. If Q,/0 = 1 then D = (2P,/0)* + 4 forc-
ing [ = 1, a contradiction. If @,/0 = 2 then 4 divides 4 forcing ¢ = 1, but
then D = 4P§ + 16, a contradiction.

Conversely, assume that € has at most one ambiguous ideal in it. If
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there are no ambiguous ideals in % then the result follows from Lemmas
3.3-3.4 of [5]. If € has exactly one ambiguous ideal in it then, by Theorems
3.1 and 3.4 of [5], I must be odd. Hence, Qu_1,2 = Quiny2 Set I = [Qu4y),2/
o, (Pyss +VD)/0l then D=P.,,,,+ Q... and the result follows
from Lemma 3.3 of [5].

Now we establish the aforementioned equivalence.

Theorem 1. Let € be a class of reduced ideals in O,, then the following
are equivalent.

(1) There exists a reduced quadratic irvational v with pure symmetric period
such that [1] € 6.

(2) There exists a reduced quadratic irvational v such that vy’ = — 1 and
[7] € €.

(3) € is an ambiguous class containing at most one ambiguous ideal.

Proof. By Hasse [3), if ¥ = {qq, @1..., 4;—1”. then

—1/7=4q Qi=gs. .., 407 ;

whence, we have the equivalence of (1) and (2).

If (2) holds then let I = [7] = [Q,/0, (P, + vD)/0ol. Thus,

D=P + Q=P+ Q=P + Q.

However, D = P} + Q,Q,_,. Therefore, Q,_, = Q, = Q,. Moreover, by [7,
Lemma 6.1, p. 418] we have that ¢,_, = L(P,_, + vD)/Q,_,) = L(P, + yD)/
Q.. =1lP, +VD)/QJ = q,; whence, P,=q,_,Q,_., — P,_, = q,Q, —
P,_, = P,; whence, P, = P,_,. Since I’ = [Q,/0, (P, + VD)/0] by Lemma
3.1 of [5], then

I'=1[Q,_,/0, (P,_,+VD)/ol = I,_,;
whence I ~ I’ and so [ is in an ambiguous class. By Lemma 1, there is at
most one ambiguous ideal in this class. Thus, we have established that (2)
implies (3).

Finally we assume (3) and prove (2). By Lemma 1, there is a reduced
ideal 1€ € with I’ = I,_,. Set I = [Q,/0, (P, +yD)/0] then I’ = [Q,_,/ 0,
(P,_, + YD)/0o]. Therefore, by Lemma 3.1 of [5], I= (I") =1[Q,_,/0,
(P, + YD)/0ol. However, by Lemma 3.2 of [5], P, = P, and Q,_, = @, so
D = P} + Q.. Setting r = P, + VD /Q yields (2).

Remark 1. In the case where an ambiguous class contains 2 ambiguous
ideals (excluded by Theorem 1) we “just miss” having pure symmetric
period; ie., if [7y] = [Q/0o, (P + YD)/0] is in an ambiguous class contain-
ing 2 ambiguous ideals then I(y) is even, and 7 = {q,, 4,..., ¢,—,> Where
g.9, * ** q,_, is a palindrome but ¢,g, * ** ¢,_, is not. For instance,

Example 1. Set D =385 =5:7-11, and let [y] = [7, (7 + v/385)/271,
then y=1<¢1,1,9,6, 2, 3,2,6,9, 1>. Here I() = 10, and [7] is ambig-
uous and equivalent to J = [5, (15 + v/385)/2], the other ambiguous ideal
in the class. Thus symmetry is ultimately tied to ambiguity.

Now we illustrate Theorem 1.

Example 2. If D= 145 =529 then letting [yl = [4, (9 + v145)/2]
we get y =<2, 1,1, 1, 2> and the class of [7] contains exactly one ambig-
uous ideal, namely [7_y,,] = [5, (5 + v145)/2]. Here I(y) = 5 and [7]’
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= [r,_] = [4, (7 + y145)/2].

Example 3. Let D = 221 = 13-17 and set [y] = [5, (11 + v221)/2]
then vy = <2, 1, 1, 2> and the class of [7] contains no ambiguous ideals.

Remark 2. In [1], Harvey Cohn asserts that there can be at most one
ambiguous class without any ambiguous ideals in the class group of a real
quadratic field. We showed this to be false in the extreme in [5].

We provide an explanation here, not explicitly given in [5], to show that
the elementary abelian 2-subgroup C,, of C, for 4 > 0 may be generated
by ambiguous classes without ambiguous ideals.

Let ¢ be the number of distinct prime divisors of a discriminant 4 > 0
excluding ome prime p = 3(mod 4) whenever 4 has such a prime divisor,
then, by Gauss, C4, has order 2'—1; i.e., there are 27! pairwise inequivalent
ambiguous classes of (reduced) ideals. If one of these classes has no ambig-
uous ideal in it then (as proved in Lemma 3.4 of [5]) D is necessarily a sum
of two relatively prime squares and N(e,) = 1. Therefore, it is clear that ¢
represents the number of distinct prime divisors of 4 in this case.

We now demonstrate that if C, contains one ambiguous class without
ambiguous ideals then C,, is generated by ambiguous classes without ambig-
uous ideals. First we observe that the subgroup C,, consisting of classes
with ambiguous ideals must have ¢ — 2 generators. To see this, we note that
(by Theorem 3.3 of [5]), each such class must have exactly 2 ambiguous
ideals in it. (Observe as well that £ = 2 since ¢ = 1 implies N(g,) = — 1.
Moreover, if t = 2, then C,, has order 1; i.e, is trivial so that there are of
course zero generators.) If we take an ambiguous class, {I}, without ambi-
guous ideals and form its product with each of the aforementioned ¢t — 2
generators, then these new t — 2 classes together with {I} yield # — 1 clas-
ses which generate C,, and each of these f — 1 classes has no ambiguous
ideal in it (observing that the product of an ambiguous class without ambi-
guous ideals and that of an ambiguous class with ambiguous ideals yields an
ambiguous class without ambiguous ideals).

The above elucidation contains the subtle point missed by Cohn in [1];
viz. that there are either no ambiguous classes without ambiguous ideal (in
which case C,, = C,,; of order 2'™Y), or their number coincides with the
number of ambiguous classes with ambiguous ideals, (in which case | CMI =
| CA,ll = 2t—2). Moreover, as shown above, in the latter case C,, is actually
generated by ambiguous classes without ambiguous ideals.

Since [1] is considered to be one of the best sources (and deservedly so!)
for this material it is worth clearing up this misconception.

Other errors in the literature concerning ambiguous classes occur for
example in [2] which we corrected and generalized in [4]. It is therefore the
hope that this paper helps the reader to see a clear overview of what is a
very beautiful topic.
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