61. Remarks on Z_{b} -extensions of Number Fields

By Takashi FUKUDA

Department of Mathematics, College of Industrial Technology, Nihon University (Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1994)

Let p be any prime number and k any finite extension of the rational number field Q. Let K be a \mathbb{Z}_p -extension of k, namely, a Galois extension whose Galois group is topologically isomorphic to the p-adic integer ring \mathbb{Z}_p . For an integer $n \ge 0$, we denote by k_n the intermediate field of K/k with degree p^n over k and by A_n the p-Sylow subgroup of the ideal class group of k_n . Let L (resp. L_n) be the p-Hilbert class field of K (resp. k_n). Then X =G(L/K) becomes a module over the formal power series ring $\Lambda =$ $\mathbb{Z}_p[[T]]$ if we define the action of 1 + T by an inner automorphism induced from a fixed topological generator of G(K/k). It is known that X is finitely generated over Λ . For $m \ge n \ge 0$, let $\omega_n = (1 + T)^{p^n} - 1 \in \Lambda$ and $\nu_{n,m} =$ $\omega_m/\omega_n \in \Lambda$. We fix an integer $n_0 \ge 0$ such that any prime of K which is ramified in K/k is totally ramified in K/k_{n_0} . Let $\mu_p(K/k)$ and $\lambda_p(K/k)$ denote the Iwasawa invariants of K/k. For a \mathbb{Z}_p -module M, |M| denotes the cardinal number of M and rank(M) denotes the dimension of M/pMover \mathbb{F}_p . First we mention a general property of a \mathbb{Z}_p -extension.

Theorem 1. Let K/k be any \mathbb{Z}_p -extension. (1) If there exists an integer $n \ge n_0$ such that $|A_{n+1}| = |A_n|$, then $|A_m| = |A_n|$ for all $m \ge n$. In particular, we see that $\mu_p(K/k) = \lambda_p(K/k) = 0$. (2) If there exists an integer $n \ge n_0$ such that $rank(A_{n+1}) = rank(A_n)$, then $rank(A_m) = rank(A_n)$ for all $m \ge n$. In particular, we see that $\mu_p(K/k) = 0$.

Proof. Note that $\mu_p(K/k_{n_0}) = p^{n_0}\mu_p(K/k)$ and $\lambda_p(K/k_{n_0}) = \lambda_p(K/k)$. Hence we may assume that $n_0 = 0$. Let $Y = G(L/KL_0)$. Then, for any $n \ge 0$, we have the following commutative diagram, where $A_n \to A_0$ is induced from the norm map $k_n \to k_0$ and $X/\nu_{0,n}Y \to X/Y$ is the restriction map (cf. [2]).

$$\begin{array}{rcl} A_n &\simeq& X/\nu_{0,n}Y\\ \downarrow && \downarrow\\ A_0 &\simeq& X/Y \end{array}$$

(1) Assume that $|A_1| = |A_0|$. Then $A_1 \rightarrow A_0$ is an isomorphism and $X/\nu_{0,1}Y \rightarrow X/Y$ is also. Therefore, $\nu_{0,1}Y = Y$. Now $\nu_{0,1}$ is contained in the unique maximal ideal $\langle p, T \rangle$ of Λ and Y is also finitely generated over Λ . Hence Y = 0 from Nakayama's lemma and $A_n \simeq X$ for all $n \ge 0$. (2) Assume that rank $(A_1) = \operatorname{rank}(A_0)$. Then $A_1/pA_1 \simeq A_0/pA_0$. Therefore we see that $X/(\nu_{0,1}Y + pX) \simeq X/(Y + pX)$ and $\nu_{0,1}Y + pX = Y + pX$. Let Z = (Y + pX)/pX. Then $\nu_{0,1}Z = (\nu_{0,1}Y + pX)/pX = (Y + pX)/pX = Z$. Hence Z = 0 again from Nakayama's lemma and $Y \subset pX$. Then, rank $(A_n) = \operatorname{rank}(X/\nu_{0,n}Y) = \operatorname{rank}(X/(\nu_{0,n}Y + pX)) = \operatorname{rank}(X/pX) = \operatorname{rank}(X)$ for all $n \ge 0$.

Next, we consider a capitulation problem in a \mathbb{Z}_p -extension. For $m \ge n$ ≥ 0 , let $H_{n,m}$ be the kernel of the map $A_n \to A_m$ induced from the natural inclusion $k_n \to k_m$. In [1], Greenberg related the behavior of $|A_n|$ to $H_{n,m}$. In particular he obtained the following result for certain type of \mathbb{Z}_p -extensions.

Theorem (Greenberg). Let K/k be a \mathbb{Z}_p -extension of a totally real number field k. Assume that only one prime of k lies over p and that this prime is totally ramified in K/k. Then $H_{0,n} = A_0$ for some $n \ge 0$ if and only if $|A_n|$ is bounded as $n \to \infty$.

We shall give an explicit form and a simple proof of this theorem.

Theorem 2. Let K/k be a \mathbb{Z}_p -extension of any number field k. Assume that only one prime of k lies over p and that this prime is totally ramified in K/k. (1) If $H_{0,n} = A_0$ for some $n \ge 1$, then $|A_m| = |A_n|$ for all $m \ge n$. (2) If $|A_{n+1}| = |A_n|$ for some $n \ge 0$ and the exponent of A_n is p^r , then $H_{n,n+r}$

$$= A_n$$
. In particular, $H_{0,n+r} = A_0$

We prepare the following easy lemma.

Lemma. $\nu_{n,m} \equiv p^{m-n} \pmod{\omega_n}$ for all $m \ge n \ge 0$. *Proof.* Note that $\nu_{n,n+1} = ((\omega_n + 1)^p - 1)/\omega_n \equiv p \pmod{\omega_n}$. Then $\nu_{n,m} = \nu_{n,n+1} \cdot \nu_{n+1,n+2} \cdots \nu_{m-1,m} = p^{m-n} \pmod{\omega_n}$.

Proof of Theorem 2. From the assumption, we get the following two commutative diagrams for all $m \ge n \ge 0$, where $X/\omega_n X \to X/\omega_m X$ is defined by $x \mod \omega_n X \mapsto \nu_{n,m} x \mod \omega_m X$ and $X/\omega_m X \to X/\omega_n X$ is the restriction map (cf. [2]).

$$\begin{array}{rcl} A_m &\simeq& X/\omega_m X & A_m &\simeq& X/\omega_m X \\ \uparrow & \uparrow & \downarrow & \downarrow \\ A_n &\simeq& X/\omega_n X & A_n &\simeq& X/\omega_n X \end{array}$$

(1) If $H_{0,n} = A_0$, then $\nu_{0,n}X = \omega_n X = \omega_0(\nu_{0,n}X)$. Since $\omega_0 \in \langle p, T \rangle$ and X is a finitely generated Λ -module, we have $\nu_{0,n}X = 0$. Hence, $\omega_n X = 0$ and $A_m \simeq X$ for all $m \ge n$. (2) It follows from $|A_{n+1}| = |A_n|$ that $X/\omega_{n+1}X \simeq X/\omega_n X$ and hence $\omega_n X = \omega_{n+1}X = \nu_{n,n+1}(\omega_n X)$. Since $\nu_{n,n+1} \in \langle p, T \rangle$, we have $\omega_n X = 0$. Note that $H_{n,n+r} = A_n$ is equivalent to $\nu_{n,n+r} X = \omega_{n+r} X = \omega_n(\nu_{n,n+r}X)$, therefore to $\nu_{n,n+r}X = 0$ because $\omega_n \in \langle p, T \rangle$. Now from the lemma and the assumption $p'A_n = 0$, we see that $\nu_{n,n+r} X \subset p' X + \omega_n X \subset \omega_n X = 0$. Hence, $H_{n,n+r} = A_n$.

In the situation of Theorem 2, $|A_n|$ is not bounded if $H_{0,n} \neq A_0$ for all $n \ge 1$. In this case, we can give an explicit lower bound of $|A_n|$.

Proposition. Let K/k be as in Theorem 2. Assume that $A_0 \neq 0$ and $H_{0,n} = 0$ for some $n \ge 0$, then $|A_n| \ge |A_0| p^n$.

Proof. We use the left one of the preceding diagrams. First we note that $|A_i| < |A_{i+1}|$ is equivalent to $\omega_i X \neq 0$. Assume that $\omega_{n-1} X = 0$. Then, $A_{n-1} \simeq X/\omega_{n-1} X \simeq X$ and X is finite. If x is any element of X such that $\nu_{0,n} x = 0$, then $x \in \omega_0 X$ because $X/\omega_0 X \to X/\omega_n X$ is injective and hence $\nu_{0,n-1} x = 0$. Next we conclude that $\nu_{0,n-1} X = 0$. In fact, if we assume that $\nu_{0,n-1} X \neq 0$, there exists $x \in X$ such that $\nu_{0,n-1} x \neq 0$. Then we see that $p\nu_{0,n-1} x = \nu_{n-1,n}\nu_{0,n-1} x = \nu_{0,n} x \neq 0$ from the lemma and the above observation. Iterating this operation by replacing x with px, we see that $p^r \nu_{0,n-1} x \neq 0$

No. 8]

T. FUKUDA

for all $r \ge 0$. This is a contradiction because X is finite. Hence $\nu_{0,n-1}X = 0$. Then, $A_0 \to A_{n-1}$ is a zero map and $A_0 \to A_n$ is also. But this contradicts the assumption $A_0 \ne 0$. Hence $\omega_{n-1}X \ne 0$. Then, for $0 \le i \le n-1$, we have $\omega_i X \ne 0$ and hence $|A_i| < |A_{i+1}|$. From this inequality, the claim follows.

Example. Finally we apply Theorem 1 to the cyclotomic \mathbb{Z}_3 -extension K of a real quadratic field k. Let $k = \mathbb{Q}(\sqrt{m})$, where m = 3137, 3719, 4409, 6809, 7226 or 9998. Then (3) is the unique prime ideal of k lying over 3 and it is totally ramified K/k. Furthermore we see that $|A_0| = |A_1| = 9$ by the method of [3]. Hence $|A_n| = 9$ for all $n \ge 0$. Namely, Greenberg's conjecture is valid for these k's and p = 3.

References

- [1] R. Greenberg: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263-284 (1976).
- [2] K. Iwasawa: On Z_l -extensions of algebraic number fields. Ann. of Math., 98, 246-326 (1973).
- [3] S. Mäki: The determination of units in real cyclic sextic fields. Lect, Notes in Math., vol. 797, Springer-Verlag, Berlin, Heidelberg, New York (1980).