66. A Hilbert Space of Harmonic Functions

By Keiko FUJITA

Sophia University

(Communicated by Kiyosi ITÔ, M. J. A., Nov. 14, 1994)

Introduction. Let $n = 2, 3, 4, \cdots$. We denote by $\mathcal{P}_{\Delta}^{k}(\mathbf{R}^{n+1})$ the space of k-homogeneous harmonic polynomials on \mathbf{R}^{n+1} and by N(k, n) the dimension of $\mathcal{P}_{\Delta}^{k}(\mathbf{R}^{n+1})$.

Ii [1] and Wada [2] introduced the following function;

$$\rho_n(r) = \begin{cases} \sum_{l=0}^{(n-1)/2} a_{nl} r^{l+1} K_l(r), \text{ if } n \text{ is odd,} \\ \sum_{l=0}^{n/2} a_{nl} r^{l+\frac{1}{2}} K_{l-\frac{1}{2}}(r), \text{ if } n \text{ is even,} \end{cases}$$

where $K_{\mu}(r)$, $\mu \in \mathbf{R}$ is the modified Bessel function and the constants a_{nl} , $l = 0, 1, 2, \cdots, [n/2]$ are defined uniquely by

$$\int_0^\infty r^{2k+n-1} \rho_n(r) dr = \frac{N(k, n) k! \Gamma\left(k + \frac{n+1}{2}\right) 2^{2k}}{\Gamma\left(\frac{n+1}{2}\right)} \equiv C(k, n), \ k = 0, 1, 2, \cdots$$

(see Lemma 2.2 in [2]). Then, they constructed a Plancherel measure on the complex light cone $\tilde{M} = \{z \in C^{n+1}; z^2 \equiv z_1^2 + z_2^2 + \cdots + z_{n+1}^2 = 0\}$, and a Hilbert space of holomorphic functions on \tilde{M} by using the measure. Furthermore, they proved that the Hilbert space is unitarily isomorphic to $L^2(S^n)$ under the Fourier transformation, where S^n is the *n*-dimensional real sphere.

In this paper, we will construct a Hilbert space of harmonic functions on \mathbb{R}^{n+1} and prove that the Hilbert space is unitarily isomorphic to a subspace of $L^2(M)$ under the Fourier transformation, where M is the spherical sphere: $M = \{z = x + iy \in \tilde{M} : ||x|| = 1/2\} \cong O(n + 1)/O(n - 1).$

The author would like to thank Professor M. Morimoto for his useful advice.

1. A Hilbert space of harmonic functions. Let ||x|| be the Euclidean norm on \mathbf{R}^{n+1} . We denote by $\mathcal{A}_{\Delta}(\mathbf{R}^{n+1})$ the space of harmonic functions on \mathbf{R}^{n+1} equipped with the topology of uniform convergence on compact sets. Define the k-homogeneous harmonic component f_k of $f \in \mathcal{A}_{\Delta}(\mathbf{R}^{n+1})$ by

(1)
$$f_k(z) = N(k, n) (\sqrt{z^2})^k \int_{S^n} f(\tau) P_{k,n} \left(\frac{z}{\sqrt{z^2}} \cdot \tau\right) dS(\tau), \quad z \in \mathbb{C}^{n+1},$$

where $z \cdot w = \sum_{j=1}^{n+1} z_j w_j$, $z, w \in C^{n+1}$, $P_{k,n}(t)$ is the Legendre polynomial of degree k and of dimension n+1, and dS is the normalized O(n+1)-invariant measure on S^n .

The following lemmas are known:

Lemma 1. Let $f \in \mathcal{A}_{\Delta}(\mathbf{R}^{n+1})$ and f_k be the k-homogeneous harmonic component of f defined by (1). Then the expansion $\sum_{k=0}^{\infty} f_k$ converges to f in the topology of $\mathcal{A}_{\Delta}(\mathbf{R}^{n+1})$.

Lemma 2. Let
$$f_k \in \mathscr{P}^k_{\Delta}(\mathbf{R}^{n+1})$$
 and $f_l \in \mathscr{P}^l_{\Delta}(\mathbf{R}^{n+1})$. If $k \neq l$, then
$$\int_{S^n} f_k(\omega) g_l(\omega) dS(\omega) = 0.$$

We define a measure $d\mu$ on \boldsymbol{R}^{n+1} by

$$\int_{\mathbf{R}^{n+1}} f(x) d\mu(x) = \int_0^\infty \int_{S^n} f(r\omega) dS(\omega) r^{n-1} \rho_n(r) dr.$$

Note that $\rho_n(r)$ is not positive but there is $R_n > 0$ such that $\rho_n(r) > 0$ for $r > R_n$. The function ρ_n is estimated as follows:

(2)
$$\begin{cases} |\rho_n(r)| \le e^{-r} r^{1/2} P_{(n-1)/2}(r), & \text{if } n \text{ is odd,} \\ |\rho_n(r)| = e^{-r} P_{n/2}(r), & \text{if } n \text{ is even} \end{cases}$$

where $P_{n/2}(r)$ and $P_{(n-1)/2}(r)$ are polynomials of degree [n/2] (see [1], p. 64 and [2], p. 429).

We define a sesquilinear form $(f, g)_{\mathbf{R}^{n+1}}$ by

$$(f, g)_{\mathbf{R}^{n+1}} = \int_{\mathbf{R}^{n+1}} f(x) \overline{g(x)} d\mu(x).$$

Although $\rho_n(r)$ is not positive, the sesquilinear form $(f, g)_{\mathbf{R}^{n+1}}$ is an inner product on

 $L^{2}\mathscr{A}_{\mathcal{A}}(\boldsymbol{R}^{n+1}) = \{ f \in \mathscr{A}_{\mathcal{A}}(\boldsymbol{R}^{n+1}) ; \| f \|_{\boldsymbol{R}^{n+1}}^{2} \equiv (f, f)_{\boldsymbol{R}^{n+1}} < \infty \}$ by the following proposition:

Proposition 3. Let $f = \sum f_k \in \mathscr{A}_{\Delta}(\mathbf{R}^{n+1})$. Then

$$(f, f)_{\mathbf{R}^{n+1}} = \sum_{k=0}^{\infty} (f_k, f_k)_{\mathbf{R}^{n+1}}$$

= $\sum_{k=0}^{\infty} C(k, n) \int_{S^n} f_k(\omega) \overline{f_k(\omega)} dS(\omega) \ge 0,$

i.e., either both sides are infinite or both sides are finite and equal.

Proof. For
$$R > 0$$
 we put $C_R(k, n) = \int_0^R r^{2k+n-1} \rho_n(r) dr$ and

$$I(R) = \int_0^R \int_{S^n} f(r\omega) \overline{f(r\omega)} dS(\omega) r^{n-1} \rho_n(r) dr.$$

Since $\rho_n(r) > 0$ for $r > R_n$, I(R) is monotone increasing for $R > R_n$ and $(f, f)_{\mathbf{R}^{n+1}} = \lim_{R \to \infty} I(R)$. By Lemma 1,

$$I(R) = \sum_{k=0}^{\infty} \frac{C_R(k, n)}{C(k, n)} (f_k, f_k)_{R^{n+1}}.$$

Similar to the proof of Proposition 2.4 in [1], we can prove

$$\lim_{R \to \infty} \sum_{k=0}^{\infty} \frac{C_R(k, n)}{C(k, n)} (f_k, f_k)_{\mathbf{R}^{n+1}} = \sum_{k=0}^{\infty} (f_k, f_k)_{\mathbf{R}^{n+1}}.$$
Q.E.D

Put

 $\begin{array}{ll} (3) \quad E^{s}(\boldsymbol{R}^{n+1}) = \{f \in \mathscr{A}_{\Delta}(\boldsymbol{R}^{n+1}) \; ; \; \exists \; C > 0, \; | \; f(x) \; | \leq Ce^{s||x||}, \; \forall \; x \in \boldsymbol{R}^{n+1} \}.\\ \text{By (2), it is easy to see that for s with $0 \leq s < 1/2$ \\ E^{s}(\boldsymbol{R}^{n+1}) \subset L^{2}\mathscr{A}_{\Delta}(\boldsymbol{R}^{n+1}) \subset E^{1/2}(\boldsymbol{R}^{n+1}).\\ \text{For $f \in \mathscr{A}_{\Delta}(\boldsymbol{R}^{n+1})$ and $0 \leq t \leq 1$, put $f^{t}(x) = f(tx)$.\\ \textbf{Lemma 4. (i)} \quad f \in L^{2}\mathscr{A}_{\Delta}(\boldsymbol{R}^{n+1})$ if and only if $f^{t} \in L^{2}\mathscr{A}_{\Delta}(\boldsymbol{R}^{n+1})$, $0 < t < 1$ and $\sup\{||\; f^{t}\;||_{\boldsymbol{R}^{n+1}}; \; 0 < t < 1\} < \infty$.\\ (ii) \quad Let \; f \in L^{2}\mathscr{A}_{\Delta}(\boldsymbol{R}^{n+1})$. Then $\lim_{t \uparrow 1} ||\; f - f^{t}\;||_{\boldsymbol{R}^{n+1}} = 0$. \end{array}$

No. 9]

Proof is similar to that of Lemma 2.8 in [1] and is omitted.

Put

(4)
$$E_{1}(x, y) = \int_{M} \exp(\zeta \cdot x) \exp(y \cdot \overline{\zeta}) dM(\zeta)$$
$$= \sum_{k=0}^{\infty} \frac{N(k, n)}{C(k, n)} ||x||^{k} ||y|^{k} P_{k,n}\left(\frac{x}{||x||} \cdot \frac{y}{||y||}\right).$$

Then $E_1(x, y)$ is real valued, symmetric and satisfies

(5)
$$\Delta_x E_1(x, y) \equiv \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_{n+1}^2}\right) E_1(x, y) = 0.$$

By (4), we have the following estimation: there is a constant C such that $|E_1(x, y)| \leq C e^{||x||/(2A)} e^{A||y||/2}$ for any A > 0. In particular, $E_1(x, \cdot)$ and $E_1(\cdot, y)$ belong to $\in L^2 \mathcal{A}_A(\mathbf{R}^{n+1})$.

Theorem 5. Let $f \in L^2 \mathcal{A}_{\Lambda}(\mathbf{R}^{n+1})$. Then

$$f(y) = (f_x, E_1(y, x))_{\mathbf{R}^{n+1}} = \int_{\mathbf{R}^{n+1}} f(x) \overline{E_1(y, x)} d\mu(x), y \in \mathbf{R}^{n+1}.$$

By Proposition 3, (4) and (5), an easy computation completes the proof. We denote by X_k the space $\mathscr{P}_{\Delta}^k(\mathbf{R}^{n+1})$ with the inner product given by

$$(f_k, g_k) = C(k, n) \int_{S^n} f_k(\omega) \overline{g_k(\omega)} dS(\omega).$$

Put

 $E_{1,k}(x, y) = \frac{N(k, n)}{C(k, n)} \| x \|^{k} \| y \|^{k} P_{k,n}\left(\frac{x}{\| x \|} \cdot \frac{y}{\| y \|}\right).$ Then $E_{1,k}(\cdot, y) \in \mathscr{P}^k_{\Delta}(\mathbf{R}^{n+1}) \subset L^2 \mathscr{A}_{\Delta}(\mathbf{R}^{n+1})$, and $f_k(y) = (f_k(x), E_{1,k}(y, x))_{\mathbf{R}^{n+1}}$ by Theorem 5, (4) and Lemma 2. Thus X_k is an N(k, n)-dimensional Hilbert space with the reproducing kernel $E_{1,k}$. We can prove that the direct sum de-composition of the Hilbert space $L^2 \mathcal{A}_{\Delta}(\mathbf{R}^{n+1}) : L^2 \mathcal{A}_{\Delta}(\mathbf{R}^{n+1}) = \bigoplus_{k=0}^{\infty} X_k$.

Thus we have the following theorem:

Theorem 6. $(L^2 \mathcal{A}_{\Delta}(\mathbf{R}^{n+1}), (,)_{\mathbf{R}^{n+1}})$ is a Hilbert space with the reproducing kernel E_1 .

2. The Fourier transformation. We denote by $L^{2}(M)$ the space of square integrable functions on M with the inner product given by

$$(f, g)_M = \int_M f(w) \overline{g(w)} dM(w),$$

where dM is the normalized O(n + 1)-invariant measure on M.

We define the k-homogeneous component F_k of $F \in L^2(M)$ by

(6)
$$F_k(z) = 2^k N(k, n) \int_M F(w) (z \cdot \bar{w})^k dM(w), z \in \mathbb{C}^{n+1}$$

Then $F_k |_{\boldsymbol{R}^{n+1}} \in \mathscr{P}^k_{\Delta}(\boldsymbol{R}^{n+1})$. We denote by $\mathscr{P}^k(\tilde{M})$ the space of the k-homogeneous polynomials on \tilde{M} . For $F_k \in \mathscr{P}^k(\tilde{M})$, it is known that

$$F_k(z) = \delta_{kl} 2^l N(k, n) \int_M F_k(w) (z \cdot \bar{w})^l dM(w), \ z \in \tilde{M}$$

(Lemma 1.3 in [2]). We denote by $\mathcal{O}(M[1])$ the space of germs of holomorphic functions on $\tilde{M}[1] = \{z = x + iy \in \tilde{M} ; ||x|| \le 1/2\}$. Let $L^2 \mathcal{O}(M)$ be the closure of $\mathcal{O}(\tilde{M}[1])|_{M}$ in $L^{2}(M)$. Then $L^{2}\mathcal{O}(M)$ is a closed subspace of $L^{2}(M)$ and the following lemma is clear:

Lemma 7. Let $F \in L^2 \mathcal{O}(M)$ and F_k be the k-homogeneous component of F

defined by (6). Then the expansion $\sum_{k=0}^{\infty} F_k$ converges to F in the topology of $L^2 \mathcal{O}(M)$.

Lemma 8. (cf. [1, Lemma 1.7] or [2, Lemma 1.4]). Let $f_k \in \mathcal{P}^k_{\Delta}(\mathbf{R}^{n+1})$ and $f_l \in \mathcal{P}^l_{\Delta}(\mathbf{R}^{n+1})$. Then

$$\delta_{kl} \int_{S^n} f_k(\omega) \overline{g_l(\omega)} dS(\omega) = \frac{N(k, n) \Gamma\left(\frac{n+1}{2}\right) k!}{\Gamma\left(k + \frac{n+1}{2}\right)} \int_M f_k(w) \overline{g_l(w)} dM(w).$$

We define the Fourier transform $\mathscr{F}F$ of $F \in L^2(M)$ by

$$\mathscr{F}F(x) = \int_M F(w) \exp(x \cdot \bar{w}) dM(w), x \in \mathbf{R}^{n+1}.$$

Then

(7)
$$\mathscr{F}F(x) = \sum_{k=0}^{\infty} \frac{1}{N(k, n)k! 2^k} F_k(x), x \in \mathbb{R}^{n+1}.$$

Theorem 9. $\mathcal{F}: F \mapsto \mathcal{F}F$ is a unitary isomorphism of $L^2\mathcal{O}(M)$ onto $L^2\mathcal{A}_{\Delta}(\mathbf{R}^{n+1})$.

Proof. Let
$$F \in L^{\infty}(M)$$
. By Lemmas 7, 8 and (7),
 $\infty > (F, F)_{M} = \sum_{k=0}^{\infty} \int_{M} F_{k}(w) \overline{F_{k}(w)} dM(w)$
 $= \sum_{k=0}^{\infty} C(k, n) \int_{\mathbb{S}^{n}} \frac{F_{k}(\omega)}{N(k, n)k!2^{k}} \frac{\overline{F_{k}(\omega)}}{N(k, n)k!2^{k}} dS(\omega)$
 $= (\mathscr{F}F, \mathscr{F}F)_{\mathbf{R}^{n+1}}$

Thus \mathscr{F} is an isometric mapping of $L^2 \mathscr{O}(M)$ into $L^2 \mathscr{A}_{\Delta}(\mathbf{R}^{n+1})$.

Surjectivity of F can be proven by Proposition 3, Lemmas 2 and 8.

Q.E.D.

(8) Theorem 10. If $f \in E^{s}(\mathbb{R}^{n+1})$, $0 \leq s < 1/2$, then $\mathscr{F}^{-1}f(z) = \int_{\mathbb{R}^{n+1}} \exp(x \cdot z) f(x) d\mu(x), z \in M$.

Proof. The right-hand side in (8) converges absolutely by (2) and (3), which we denote by F(z). Then by the Fubini theorem and Theorem 5, $\mathscr{F}F(x) = f(x)$. Q.E.D.

Corollary 11. Let
$$f \in L^2 \mathcal{A}_{\Delta}(\mathbf{R}^{n+1})$$
. Then

$$\mathcal{F}^{-1}f(z) = \lim_{t \uparrow 1} \int_{\mathbf{R}^{n+1}} \exp(x \cdot z) f(tx) d\mu(x), \ z \in M,$$

where l.i.m. means the strong convergence in $L^{2}(M)$.

Theorem 12. Let
$$f \in L^2 \mathcal{A}_{\Delta}(\mathbf{R}^{n+1})$$
. Then
 $\mathcal{F}^{-1}f(z) = \lim_{R \to \infty} \int_0^R \left(\int_{S^n} \exp(r\omega \cdot z) f(r\omega) dS(\omega) \right) r^{n-1} \rho_n(r) dr, \ z \in M.$

Proof is similar to that of Theorem 2.11 in [1] and is omitted.

References

- [1] K. Ii: On a Bargmann-type transform and a Hilbert space of holomorphic functions. Tôhoku Math. J., 38, 57-69 (1986).
- [2] R. Wada: On the Fourier-Borel transformations of analytic functionals on the complex sphere. ibid., 38, 417-432 (1986).