66. A Hilbert Space of Harmonic Functions

By Keiko FUJITA
Sophia University
(Communicated by Kiyosi ItÔ, M. J. A., Nov. 14, 1994)

Introduction. Let $n=2,3,4, \cdots$. We denote by $\mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$ the space of k-homogeneous harmonic polynomials on \boldsymbol{R}^{n+1} and by $N(k, n)$ the dimension of $\mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$.

Ii [1] and Wada [2] introduced the following function;

$$
\rho_{n}(r)=\left[\begin{array}{l}
\sum_{l=0}^{(n-1) / 2} a_{n l} r^{l+1} K_{l}(r), \text { if } n \text { is odd, } \\
\sum_{l=0}^{n / 2} a_{n l} r^{l+\frac{1}{2}} K_{l-\frac{1}{2}}(r), \text { if } n \text { is even },
\end{array}\right.
$$

where $K_{\mu}(r), \mu \in \boldsymbol{R}$ is the modified Bessel function and the constants $a_{n l}, l$ $=0,1,2, \cdots,[n / 2]$ are defined uniquely by

$$
\int_{0}^{\infty} r^{2 k+n-1} \rho_{n}(r) d r=\frac{N(k, n) k!\Gamma\left(k+\frac{n+1}{2}\right) 2^{2 k}}{\Gamma\left(\frac{n+1}{2}\right)} \equiv C(k, n), k=0,1,2, \cdots
$$

(see Lemma 2.2 in [2]). Then, they constructed a Plancherel measure on the complex light cone $\tilde{M}=\left\{z \in \boldsymbol{C}^{n+1} ; z^{2} \equiv z_{1}^{2}+z_{2}^{2}+\cdots+z_{n+1}^{2}=0\right\}$, and a Hilbert space of holomorphic functions on \tilde{M} by using the measure. Furthermore, they proved that the Hilbert space is unitarily isomorphic to $L^{2}\left(S^{n}\right)$ under the Fourier transformation, where S^{n} is the n-dimensional real sphere.

In this paper, we will construct a Hilbert space of harmonic functions on \boldsymbol{R}^{n+1} and prove that the Hilbert space is unitarily isomorphic to a subspace of $L^{2}(M)$ under the Fourier transformation, where M is the spherical sphere:

$$
M=\{z=x+i y \in \tilde{M} ;\|x\|=1 / 2\} \cong \mathrm{O}(n+1) / \mathrm{O}(n-1)
$$

The author would like to thank Professor M. Morimoto for his useful advice.

1. A Hilbert space of harmonic functions. Let $\|x\|$ be the Euclidean norm on \boldsymbol{R}^{n+1}. We denote by $\mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ the space of harmonic functions on \boldsymbol{R}^{n+1} equipped with the topology of uniform convergence on compact sets. Define the k-homogeneous harmonic component f_{k} of $f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ by

$$
\begin{equation*}
f_{k}(z)=N(k, n)\left(\sqrt{z^{2}}\right)^{k} \int_{S^{n}} f(\tau) P_{k, n}\left(\frac{z}{\sqrt{z^{2}}} \cdot \tau\right) d S(\tau), \quad z \in C^{n+1} \tag{1}
\end{equation*}
$$

where $z \cdot w=\sum_{j=1}^{n+1} z_{j} w_{j}, z, w \in \boldsymbol{C}^{n+1}, P_{k, n}(t)$ is the Legendre polynomial of degree k and of dimension $n+1$, and $d S$ is the normalized $\mathrm{O}(n+1)$ invariant measure on S^{n}.

The following lemmas are known:
Lemma 1. Let $f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ and f_{k} be the k-homogeneous harmonic component of f defined by (1). Then the expansion $\sum_{k=0}^{\infty} f_{k}$ converges to f in the topology of $\mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$.

Lemma 2. Let $f_{k} \in \mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$ and $f_{l} \in \mathscr{P}_{\Delta}^{l}\left(\boldsymbol{R}^{n+1}\right)$. If $k \neq l$, then

$$
\int_{S^{n}} f_{k}(\omega) g_{l}(\omega) d S(\omega)=0
$$

We define a measure $d \mu$ on \boldsymbol{R}^{n+1} by

$$
\int_{\boldsymbol{R}^{n+1}} f(x) d \mu(x)=\int_{0}^{\infty} \int_{S^{n}} f(r \omega) d S(\omega) r^{n-1} \rho_{n}(r) d r
$$

Note that $\rho_{n}(r)$ is not positive but there is $R_{n}>0$ such that $\rho_{n}(r)>0$ for $r>R_{n}$. The function ρ_{n} is estimated as follows:

$$
\begin{cases}\left|\rho_{n}(r)\right| \leq e^{-r} r^{1 / 2} P_{(n-1) / 2}(r), & \text { if } n \text { is odd, } \tag{2}\\ \left|\rho_{n}(r)\right|=e^{-r} P_{n / 2}(r), & \text { if } n \text { is even }\end{cases}
$$

where $P_{n / 2}(r)$ and $P_{(n-1) / 2}(r)$ are polynomials of degree [$n / 2$] (see [1], p. 64 and [2], p. 429).

We define a sesquilinear form $(f, g)_{\boldsymbol{R}^{n+1}}$ by

$$
(f, g)_{\boldsymbol{R}^{n+1}}=\int_{\boldsymbol{R}^{n+1}} f(x) \overline{g(x)} d \mu(x)
$$

Although $\rho_{n}(r)$ is not positive, the sesquilinear form $(f, g)_{\boldsymbol{R}^{n+1}}$ is an inner product on

$$
L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)=\left\{f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right) ;\|f\|_{\boldsymbol{R}^{n+1}}^{2} \equiv(f, f)_{\boldsymbol{R}^{n+1}}<\infty\right\}
$$

by the following proposition:
Proposition 3. Let $f=\sum f_{k} \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Then

$$
\begin{aligned}
(f, f)_{\boldsymbol{R}^{n+1}} & =\sum_{k=0}^{\infty}\left(f_{k}, f_{k}\right)_{\boldsymbol{R}^{n+1}} \\
& =\sum_{k=0}^{\infty} C(k, n) \int_{S^{n}} f_{k}(\omega) \overline{f_{k}(\omega)} d S(\omega) \geq 0
\end{aligned}
$$

i.e., either both sides are infinite or both sides are finite and equal.

Proof. For $R>0$ we put $C_{R}(k, n)=\int_{0}^{R} r^{2 k+n-1} \rho_{n}(r) d r$ and

$$
I(R)=\int_{0}^{R} \int_{S^{n}} f(r \omega) \overline{f(r \omega)} d S(\omega) r^{n-1} \rho_{n}(r) d r
$$

Since $\rho_{n}(r)>0$ for $r>R_{n}, I(R)$ is monotone increasing for $R>R_{n}$ and $(f, f)_{R^{n+1}}=\lim _{R \rightarrow \infty} I(R)$. By Lemma 1,

$$
I(R)=\sum_{k=0}^{\infty} \frac{C_{R}(k, n)}{C(k, n)}\left(f_{k}, f_{k}\right)_{R^{n+1}}
$$

Similar to the proof of Proposition 2.4 in [1], we can prove

$$
\lim _{R \rightarrow \infty} \sum_{k=0}^{\infty} \frac{C_{R}(k, n)}{C(k, n)}\left(f_{k}, f_{k}\right)_{\boldsymbol{R}^{n+1}}=\sum_{k=0}^{\infty}\left(f_{k}, f_{k}\right)_{\boldsymbol{R}^{n+1}}
$$

Q.E.D.

Put
(3) $\quad E^{s}\left(\boldsymbol{R}^{n+1}\right)=\left\{f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right) ; \exists C>0,|f(x)| \leq C e^{s\|x\|}, \forall x \in \boldsymbol{R}^{n+1}\right\}$.

By (2), it is easy to see that for s with $0 \leq s<1 / 2$

$$
E^{s}\left(\boldsymbol{R}^{n+1}\right) \subset L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right) \subset E^{1 / 2}\left(\boldsymbol{R}^{n+1}\right)
$$

For $f \in \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ and $0 \leq t \leq 1$, put $f^{t}(x)=f(t x)$.
Lemma 4. (i) $f \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$ if and only if
$f^{t} \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right), 0<t<1$ and $\sup \left\{\left\|f^{t}\right\|_{\boldsymbol{R}_{t}^{n+1}} ; 0<t<1\right\}<\infty$.
(ii) Let $f \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Then $\lim _{t \uparrow 1}\left\|f-f^{t}\right\|_{\boldsymbol{R}^{n+1}}=0$.

Proof is similar to that of Lemma 2.8 in [1] and is omitted.
Put

$$
\begin{align*}
E_{1}(x, y) & =\int_{M} \exp (\zeta \cdot x) \exp (y \cdot \bar{\zeta}) d M(\zeta) \\
& =\sum_{k=0}^{\infty} \frac{N(k, n)}{C(k, n)}\|x\|^{k}\|y\|^{k} P_{k, n}\left(\frac{x}{\|x\|} \cdot \frac{y}{\|y\|}\right) . \tag{4}
\end{align*}
$$

Then $E_{1}(x, y)$ is real valued, symmetric and satisfies

$$
\begin{equation*}
\Delta_{x} E_{1}(x, y) \equiv\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n+1}^{2}}\right) E_{1}(x, y)=0 \tag{5}
\end{equation*}
$$

By (4), we have the following estimation: there is a constant C such that $\left|E_{1}(x, y)\right| \leq C e^{\|x\| / /(2 A)} e^{A\|y\| / 2}$ for any $A>0$. In particular, $E_{1}(x, \cdot)$ and $E_{1}(\cdot, y)$ belong to $\in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$.

Theorem 5. Let $f \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Then

$$
f(y)=\left(f_{x}, E_{1}(y, x)\right)_{\boldsymbol{R}^{n+1}}=\int_{\boldsymbol{R}^{n+1}} f(x) \overline{E_{1}(y, x)} d \mu(x), y \in \boldsymbol{R}^{n+1}
$$

By Proposition 3, (4) and (5), an easy computation completes the proof.
We denote by X_{k} the space $\mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$ with the inner product given by

Put

$$
\begin{gathered}
\left(f_{k}, g_{k}\right)=C(k, n) \int_{S^{n}} f_{k}(\omega) \overline{g_{k}(\omega)} d S(\omega) . \\
E_{1, k}(x, y)=\frac{N(k, n)}{C(k, n)}\|x\|^{k}\|y\|^{k} P_{k, n}\left(\begin{array}{c}
x \\
\|x\|
\end{array}\|y\|\right) .
\end{gathered}
$$

Then $E_{1, k}(\cdot, y) \in \mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right) \subset L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$, and $f_{k}(y)=\left(f_{k}(x), E_{1, k}(y, x)\right)_{\boldsymbol{R}^{n+1}}$ by Theorem 5, (4) and Lemma 2. Thus X_{k} is an $N(k, n)$-dimensional Hilbert space with the reproducing kernel $E_{1, k}$. We can prove that the direct sum decomposition of the Hilbert space $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right): L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)=\bigoplus_{k=0}^{\infty} X_{k}$.

Thus we have the following theorem:
Theorem 6. $\left(L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right),(,)_{\boldsymbol{R}^{n+1}}\right)$ is a Hilbert space with the reproducing kernel E_{1}.
2. The Fourier transformation. We denote by $L^{2}(M)$ the space of square integrable functions on M with the inner product given by

$$
(f, g)_{M}=\int_{M} f(w) \overline{g(w)} d M(w)
$$

where $d M$ is the normalized $\mathrm{O}(n+1)$-invariant measure on M.
We define the k-homogeneous component F_{k} of $F \in L^{2}(M)$ by

$$
\begin{equation*}
F_{k}(z)=2^{k} N(k, n) \int_{M} F(w)(z \cdot \bar{w})^{k} d M(w), z \in \mathrm{C}^{n+1} \tag{6}
\end{equation*}
$$

Then $\left.F_{k}\right|_{\boldsymbol{R}^{n+1}} \in \mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$. We denote by $\mathscr{P}^{k}(\tilde{M})$ the space of the k-homogeneous polynomials on \tilde{M}. For $F_{k} \in \mathscr{P}^{k}(\tilde{M})$, it is known that

$$
F_{k}(z)=\delta_{k l} 2^{l} N(k, n) \int_{M} F_{k}(w)(z \cdot \bar{w})^{l} d M(w), z \in \tilde{M}
$$

(Lemma 1.3 in [2]). We denote by $\mathcal{O}(\tilde{M}[1])$ the space of germs of holomorphic functions on $\tilde{M}[1]=\{z=x+i y \in \tilde{M} ;\|x\| \leq 1 / 2\}$. Let $L^{2} \mathscr{O}(M)$ be the closure of $\left.\mathscr{O}(\tilde{M}[1])\right|_{M}$ in $L^{2}(M)$. Then $L^{2} \mathscr{O}(M)$ is a closed subspace of $L^{2}(M)$ and the following lemma is clear:

Lemma 7. Let $F \in L^{2} \mathscr{O}(M)$ and F_{k} be the k-homogeneous component of F
defined by (6). Then the expansion $\sum_{k=0}^{\infty} F_{k}$ converges to F in the topology of $L^{2} \mathscr{O}(M)$.

Lemma 8. (cf. [1, Lemma 1.7] or [2, Lemma 1.4]). Let $f_{k} \in \mathscr{P}_{\Delta}^{k}\left(\boldsymbol{R}^{n+1}\right)$ and $f_{l} \in \mathscr{P}_{\Delta}^{l}\left(\boldsymbol{R}^{n+1}\right)$. Then

$$
\delta_{k l} \int_{S^{n}} f_{k}(\omega) \overline{g_{l}(\omega)} d S(\omega)=\frac{N(k, n) \Gamma\left(\frac{n+1}{2}\right) k!}{\Gamma\left(k+\frac{n+1}{2}\right)} \int_{M} f_{k}(w) \overline{g_{l}(w)} d M(w) .
$$

We define the Fourier transform $\mathscr{F} F$ of $F \in L^{2}(M)$ by

$$
\mathscr{F} F(x)=\int_{M} F(w) \exp (x \cdot \bar{w}) d M(w), x \in \boldsymbol{R}^{n+1}
$$

Then

$$
\begin{equation*}
\mathscr{F} F(x)=\sum_{k=0}^{\infty} \frac{1}{N(k, n) k!2^{k}} F_{k}(x), x \in \boldsymbol{R}^{n+1} . \tag{7}
\end{equation*}
$$

Theorem 9. $\mathscr{F}: F \mapsto \mathscr{F} F$ is a unitary isomorphism of $L^{2} \mathscr{O}(M)$ onto $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$.

Proof. Let $F \in L^{2} \mathscr{O}(M)$. By Lemmas 7, 8 and (7),

$$
\begin{aligned}
\infty>(F, F)_{M} & =\sum_{k=0}^{\infty} \int_{M} F_{k}(w) \overline{F_{k}(w)} d M(w) \\
& =\sum_{k=0}^{\infty} C(k, n) \int_{s^{n}} \frac{F_{k}(\omega)}{N(k, n) k!2^{k}} \frac{\overline{F_{k}(\omega)}}{N(k, n) k!2^{k}} d S(\omega) \\
& =(\mathscr{F} F, \mathscr{F} F)_{\boldsymbol{R}^{n+1}} ;
\end{aligned}
$$

Thus \mathscr{F} is an isometric mapping of $L^{2} \mathscr{O}(M)$ into $L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$.
Surjectivity of F can be proven by Proposition 3, Lemmas 2 and 8.
Q.E.D.

Theorem 10. If $f \in E^{s}\left(\boldsymbol{R}^{n+1}\right), 0 \leq s<1 / 2$, then

$$
\begin{equation*}
\mathscr{F}^{-1} f(z)=\int_{\boldsymbol{R}^{n+1}} \exp (x \cdot z) f(x) d \mu(x), z \in M \tag{8}
\end{equation*}
$$

Proof. The right-hand side in (8) converges absolutely by (2) and (3), which we denote by $F(z)$. Then by the Fubini theorem and Theorem 5, $\mathscr{F} F(x)=f(x)$.
Q.E.D.

Corollary 11. Let $f \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Then

$$
\mathscr{F}^{-1} f(z)=\underset{t \uparrow 1}{1 . i . m} . \int_{\boldsymbol{R}^{n+1}} \exp (x \cdot z) f(t x) d \mu(x), z \in M,
$$

where l.i.m. means the strong convergence in $L^{2}(M)$.
Theorem 12. Let $f \in L^{2} \mathscr{A}_{\Delta}\left(\boldsymbol{R}^{n+1}\right)$. Then

$$
\mathscr{F}^{-1} f(z)=\underset{R \rightarrow \infty}{\text { 1.i.m. }} \int_{0}^{R}\left(\int_{S^{n}} \exp (r \omega \cdot z) f(r \omega) d S(\omega)\right) r^{n-1} \rho_{n}(r) d r, z \in M
$$

Proof is similar to that of Theorem 2.11 in [1] and is omitted.

References

[1] K. Ii: On a Bargmann-type transform and a Hilbert space of holomorphic functions. Tôhoku Math. J. , 38, 57-69 (1986).
[2] R. Wada: On the Fourier-Borel transformations of analytic functionals on the complex sphere. ibid., 38, 417-432 (1986).

