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1. Introduction and the main theorem. In connection with a problem
of the inviscid Burgers equation ([10], [11]), Sinai ([12]) obtained the follow-
ing estimates (1.3) and (1.4) for the distribution of the integral of one-
dimensional Brownian motion b(t) starting at 0: For r > 0, a R, A > 0
and a> 0, let

(1.1) Pr(A) P b(u)du < at for all 0 <-- t <_ A

and

/Y0(1.2) Praa P b(u)du < r + at + at for all 0 --< t --< oo

Then, for each fixed r > 0 and a R,
(1.3) P(A) A-/4

as A T co

and
1/2

(1.4) Praa as a 0.
Here we use the following general notation; for positive functions f(x) and
g(x) on (0, oo),

g(x) g(x)
f(x)g(x) asx T oo[ 0] if0 < liminf < limsup < oo

o f(x) f(x)x

and
g(x)

f(x) g(x) asx oo[ 0] ifxTlim*0f(x) 1.

In this paper, we refine these results in the following way:
(1.5) P(A) C(r, a)A-/ as A oo

and
1/2

(1.6) Praa C2 (r a) a as a ; 0.
Also we compute explicit expressions of C(r, a)and C.(r, a). Our
approach to this problem is based on an observation of a two dimensional
diffusion process (X(t), Y(t)) defined by

(1.7) Y(t) g + b(t), X(t) x + Y(u) du x + yt + b(u)du.

This diffusion is often called the Kolmogorov diffusion since it has been intro-
duced by Kolmogorov [4]. As usual, we denote the probability law for the
diffusion starting at (x, y) R by P(x,) and let T be the first hitting time

to the positive y-axis:
(1.8) T-- inf{t _> 0; X(t) O, Y(t) >_ 0}.
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Then both asymptotics (1.5) and (1.6) can be obtained systematically from
the following theorem.

Theorem. For a >-- 0, b >- 0 and (x, y) R with x <-- O,
(1.9)1 Ex,(exp[-- a T- baY(T)]) C(a, b x, y) v as a O.
The constant C (a, b x, y) is obviously zero ira b 0 or y 0 and x O.
Otherwise it is strictly positive and can be expressed in the following form

3 (b +) x/6t_/dt(1.10) C(a, b , ) ](b + 2) F(1/6)
0,>0.

3 (b +)
(1.11) C(a, b; , ) ](b + 2) F(1/6) e

= ,(t)/6( 2)-/6

x e- t+ dt, >0, 0.

As a corollary of this theorem, we can obtain (1.5) and (1.6) with
1

(1.12) Cx(r, a) C(1,0; r, a)

and
(1.1g) C(f, a) C(2,2; f, a).
The proof of the theorem we give in section 2 depends heavily on a formula
of McKean [8] for the joint distribution of T and Y( with respect to the
law P(o,- cf. also related results in [2], [], [51-[71. Lachal [51 in fact
obtained an expression for the joint distribution of (T, Y(T)) with respect
to P(, for any (z, ), but it seems difficult to derive (1.10) and (1.11) from
his result. The reduction of (1.5) and (1.6) to the theorem will be given in
section g.

Finally we would thank Professor S. Kotani for helpful discussions and
his suggestion to consider the Laplace transform v in section 2.

2. Proof f the theorem. The proof proceeds as the starting point
(, ) being situated first in the negative -axis, then in the negative -axis,
in the third quadrant and finally in the second quadrant.

2.1. Preliminaries. For a 2 0, b 2 0 and > 0, let be the function
on the left half lane {(z, ) Ix N 0} of R defined by
(2.1) u(x, y)(= u(x, y; a, a, b)) Ex,){exp[- aaT- baY(]}.
Then u is uniquely determined by the following properties: 0 < u < 1 and
satisfies in the half plane {x < 0} the equation

1 Zu u
(2.2) Lu’= 2 Oyz + y aa u

with the boundary condition on the positive y-axis"
--bay

(2.3) limu(x, y) e y > O.
xT0

By the scaling property of the Brownian motion, we deduce easily that
(2.4) u(x, y ca, a, b) u(cx, cy a, a, b), c> O.
Let

(2.5) v(;,)(=v(;,, a, b)) e(x, , a, b)dx, > 0.
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By an integration by parts, we see that v(y)= v(y;ff, /)satisfies for
y > 0 the equation

(2.6) -1 v, (y) (fl + a)v(y) ye_O.
Let (y), (y), F(y) be defined by

31/3F(2 / 3) 2" 3
-1/3

3/2).F(y) (y) F(1/3) (Y) F(1/3) /K1/2(2/3y
This F(y) is a constant multiple of the Airy function Ai(y). We introduce

v (y) F(2fly + s)/F(s),
1

{-- (s)(y + s) + (s)(fly + s)}v(y)

2aa 1
where s Then v(y) re(y) are solutions of (y) (fly +

(2)
aa v(y) such that v(O) 1, v(y) is bounded on (0, ), and v(O) O,
v(0) 1. Hence

(2.7) v(y; , ) 2vl(y) v()e-d + 2v(y) v()e-ed
+ v(0 , )v(y).

Let
(2.8) To inf(t 2 0; Y(t) 0}, X X(To).
It is obvious that X < 0 a.s. (P(o,-)) if y > 0. Applying the optional sam-
pling theorem to the local martingale
(2.9) f(-- Y(t))e(, > O,
we obtain E(o,_)[ex] F(y).
We can easily invert the Laplace transform to obtain the following:

P(o ,)(-- X dx) 2
/a

Y -2ya/9x
e w>0, y>0.

McKean ([81)

Also it is well-known that

(2.11) E(o,_)[e-gr] e-", > O, [ > O.
2.2 The case of the starting point on the negative y-axis.

obtained the following formula:
3.0

e(o,-1) IT ( dt, Y( T) dh]
l,,,t e__(l_h+h2 "l

4h/t e--
r"2v .,o

dO" dh dt,

Then, as a 0, we have
-aff2T-br Y T)

1 u(0, 1 ;a, a, b) E(o,_)[1 e

fo fo dt dh(1- e-2’-bh)

dt dh
(1 e

/grbt

t,h>O.

4h --03. --/" fo e

f2rt2
e -dO

4ah
2a (h ee- -h+>

Jo adO
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12a
/ oooo -t-) h/

2ah

/zc/.b/.
dt dh(1 e t e

3(b + /-)
/-6v/-v/b + 2/a

by noting that t-/e-/dt- ba
a3/h323/

/2, t-/e-/t-tdt
a

h
-/

_/ 2 b h

and K_(z) (1 +
This proves that (1.9) holds for (z, ) (0, 1) with

(2.12) C(a, b;O, 1)
(b +)

and, by the scaling property (2.4), it is immediately seen that (1.9) holds on
the negative -axis with

3(b +)
(2.3) C(a, b;0, u) g(b + 2)’ u > 0.

2.3. The case of the starting point on the negative x-axis. By the strong
Markov property applied to the hitting time To in (2.8) it follows that, for
y>0,
(2.14) u(O, y a, a, b) E(o,_)[e-u(X 0" a b)]
Then, noting (2.11) and the scaling property (2.4),
C(a, b O, y) l u(O, y a, a, b) E(o,_)[1- u(X, O a, a, b)]-

E(o,_)[ u(- ,0 ;I X Ia, a b)] asa 0
and, by (2.1 0), this is equal to

21/3Y -2u/gx -4/3 /3
(2.15) Jo e x (1-- u(-- 1,0;x a, a, b))dx.

Now we can apply a Tauberian theorem to conclude that
(2.16) 1--(-- 1,0;, a, b) C(a, b;- 1.0), as 0
and the constant C(a, b; 1,0) satisfies

C(a, b;o,- 1.
By the scaling property (2.4),

1/
(2.17) 1-(-x, 0;e,a, b) 1-u(-1,0;x a,a, b)

C(a, b’- 1,0)x/ as ; 0,
that is (1.9) holds on the negative -axis with

/C(2.18) C(a, b z, O) z (a b 0 1)

F()2/
2.4. The case of the starting point in the third quadrant. Clearly the

joint distribution of (To, X X(To)) with respect to the law P(-x,-) is that
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of(T0, x+X with respect to P<o,-y>. Then, by the strong Markov prop-
erty and (2.17) together with a careful estimate, we can show that
1 u( x y’a, a b) 1 E<o,_y)[e-aru(,-- x+X ,O;a,a,b)]

E<o,_)[1 u(-- x + X, 0;a, a, b)]
C(a, b 1,0)E<o,_.>[(x X)/6], x>0, y>0.

This proves that (1.9) holds for (-- x, y), x > 0, y > 0 with

C(a, b; x, y) C(a, b; 1,0)E<o,_.)[(x X) /6]
C (a b O, 1) t_/6e_t t + Y dt.

2.g. he ease f the srfing pint in the second quadrant. Let v( , )
be defined by (2.5). Then by the result in the subsection 2.,

v(0; , B) ,(-- z, 0; , a, b)e-dx

1
B c o.

Note that functions (), () and F(g) in the subsection 2.1 are entire
functions. Then from (2.7), we see by Taylor expansions and integration by
parts that as 0 and > 0 being fixed,

1 -7/F() b 1v( , B C(a ,OF( as 0.

From this we can conclude by a standard argument that, for > 0 and > 0,
(2.19) 1 (-- z, , a, b) C(a, b; z, )
with

-x -/C(a, b x, )e dx- C(a b, 1,0)F()
We can invert this (el. Oberhettinger and Badii [9], (13.45)) to obtain

(2.20) C(a,b;--x,g)-C(a,b;-1,O)
2/aF()

e

where W_(’) is the Whittaker function. Noting

(2 21) W_a (z) e dr,
’ F() (z + t)/

(cf. Abramowitz [1], (13.2.5) and (13.1.33)) and (2.18), we finally obtain

C(a, b;-x, y)

C(a, b’O, 1) _foo -te- 9x e dt

3. The reduction of (1.5) and (1.6) to the theorem. Since Pra(A)=
P<_r,_a)(T > A), (1.5) with (1.12) is an immediate consequence of the Taube-
rian theorem applied to
(3.1) 1 E<_r,_)[e-2] C(1,0; r, a)/- as a 0.
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For a > O, we consider the Kolmogorov diffusion with drift:

(3.2) Y(t) y + b(t) 2t, X(t) x + Y()d

x + yt-- at + b(u)du.

The probability law of this diffusion starting at (x, y) is denoted by P<x,u) so
0

that P<x,u) P<x,). Then by Girsanov s theorem, we have for any n > O,

P(x,) T < n] E(x,,) [e -ay(n)-ui-(2)---n ;T<n]
E(x,)[e-Ir(^)-l-^’, T < n]
2ay -2aY(T) (2)2 Te E(x,)[e T < n].

Noting P(x,)(T oo) 1 and lettig n-- c we have

Praa P -2o -2aY(T)-(2-)2T]
(-r,-a) (T oo) 1 e E(_r,_a) [e

1- E<_r,_a)[e-2aYT)-’T] -- 0(7), as o" O.
Hence by the theorem,
(3.3) Praa vC(2,2 r, a) as a + 0
and we obtain (1.6)with Cz(r, a) C(2,2 r, a).
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