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§1. Introduction. Let X = (0,1)* ® (a, B) and assume that 1, a,
are linearly independent over Q. Put

ata, B = [L], b@ p = [2]

and
1
T@ = (&~ b p, %~ ap),
then T is a transformation of X into itself. (X, T, a(a, B), b(a, B)) is cal-
led Jacobi-Perron algorithm. Put
(a,, b)) 1= (@(T" ' a, ), 6(T" (@, P)) n=1,2,"- ,

a 01
A(a, b):=<1 0 0)

b 10
and
9w Qu-2 91
(p” pn—z pn—l > = A(al’ bl) e A(an’ bn) n = 1’2’. : .’
rn "n—z rn—l
then it is shown that
max((a — p,/q,1, | B— 7,/¢,) =0 asn— o,
(b,/q, 7,/4,) is called the n-th convergent of (a, B). If
‘ T"(a, B) = T"(a, B) for m + n,
then (a, B) is called periodic.
Suppose now (&, B) is periodic and let
" (@, B = T""(a, p) p=1.
Put
M= A(am-!-l’ bm+1) o 'A(am+lv bm+1>)'
M is a 3 X 3 integral matrix. Perron [1] proved the following result.
The following conditions (1), (2) are equivalent.
(1) M has the eigenvalues A, A, A, such that
A€R A1>1
Ay Ay timaginary | Al =12, <1
and the column vector ‘(1, a, B) is the eigenvector for A.
(2) The order of approximations of (e, B) by the convergents (p,/q,, v,/
q,) is of exponent 1/2, i.e. for some K > 0
‘/&;ana—pnl <K, \/Elqnﬁ- rn' <K foralln €N.
It is not difficult to see that if (&, B) is periodic and the condition (1) is
satisfied, then for some K
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(%) | Qubu—y — qn—lpnl < K@r | Gwbn-2 — Qn-2Dn | < K\/E’
I An¥n-1 — n-1"n | < K\/E and ‘ An¥n—2 — Qn-2"n | < K\/E'
The purpose of the paper is to show
abc
Theorem. Let N = <d e f > be an integral wmatrix and A be a real
g h 1
cigenvalue of N. Let '(1, at, B) be the column eigenvector of N for A and we sup-
pose that A is cubic irvational and that 1, a, B ave linearly independent over Q.
Suppose furthermore (a, B) € X.
If the convergents (j;—:, ;—:) of (a, B) satisfy condition (%), then (a, B) is
periodic.
In view of Perron’s result, this Theorem has the following corollary.
Corollary. The convergents of (&, B) satisfy condition (%) if and only if
(a, B) is periodic and satisfies the condition (1).
§2. Outline of the proof of the Theorem. The proof of the theorem is
based on the following fundamental formula.
Fundamental formula. Lef us denote
(@, B = Tn(a, 3.
Then the following formula holds :

1

¢ — -
(21) (17 Ay, an) - aa;

qn ‘In—z qn—l
Qn = pn pn—z ﬁn—-l
rn "n—z rn—l
where (p,/4q,, ¥,/q,) are convergents of (&, 8) and

A, B, C,
N,:=|D, E, F, |:=Q,'NQ,,
G, H, I,

Aa,, b))~ -+ Aay, )71, a, B).

Now put

and denote

Pn Y= q,8 — by, Rn:= qnﬂ— Yy
Under these notations, we find the exact forms of 4,, B,, ' -*, I, as follows:
(2,A) An = (— qn—an—l + qn—an—z)a(an + CRn)

+ (= Qn—IPn-Z + qn—ZPn—l)B(an + CRn)

- qn—IRn—Z + Qn—an—l) (ePn + fRn)
- qn—an—l + qn—l-Pn—z) (th + an)
(— g oR, 1 + ¢, R,_)a(bP,_, + cR,_,)
- qn—an—z + Qn—an—l)B(an-—z + CRn—Z)
— g, R, ;+ g, R, )(eP, , + fR, ;)
n—ZPn—l + qn—IPn—z) (th—z + iRn—Z)
= (-— Qn—an—l + qn—-an—z)a(an-—l + CRn—-l)
= qurPy_y + q, P, DBWP,_ + cR,_)
— gy R,z + g, 2R, ) (eP,_, + fR, )
= @yl + @, Py_) (WP, + iR, )

~ ~

Il

(2,B)

~ A~ A~
Q

(2.0

PO+ 4+

~ A~
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(29D) Dn ( qn-—an + ann—l)a(an + CRn)

= @Pyy + 4,-,P)B(OP, + cR,)

q Rn—l + qn—an) (ePn + fRn)

q -—1Pn + ann—l) (th + an)

( qn—an + Qan—l)a(an—Z + CRn—-z)
= ¢,Pyy + 4, P)BOP,_, + cR,_,)

— 4y Rn—l + Qn—an) (ePn—Z + f-Rn—z)
qn—IPn + ann—l) (th—z + iRn—z)

( qn—an + ann—l)a(an—l + CRn-—l)
— q, Pn—l + Qn—IPn)B(an—l + CRn—l)

— qn Rn—l + qn—an) (ePn—l + fRn—l)

— qu- 1P +qn n— 1)(th 1+an 1)
=(—q,R,_, + q,_,R,)a(bP, + cR,)

+ (— q,_,P, + q,P,_,) B(bP, + cR,)

+ (— q,_,R, + q,R,_,) (eP, + fR,)

+ (- ¢,P,_, + q,_,P,) (hP, + iR))

H,= (- ¢q,R, , + q, ,R)aP,_, + cR,_,)
(= g,oPy + q,P,_) B(bP,_, + cR,_,)

(= @u2R, + q,R,_;) (eP,_, + fR,_,)

(= @uPu_y + qu_sPy) (WP,_, + iR,_,)
(=

+
+
+
(2E) E

N

+
+
+
(2,F) F

I

+
.+.
+
G

(2,G)

N

(2.H)
_|_
+
+

I

2.0 I,
+
+

( ‘Ian—z + Qn—an)a(an—l + CRn—l)
4p-oP, + 4,P, ) BOP,_, + cR,_)
(— Qn—an + Qan—z) (ePn—l + fRn—l)
+ (= QnPn—z + qn—ZPn) (th—l + Z.Rn-l)'
We will prove the Theorem in showing the boundedness of 4,, - -, I,.
Lemma 2.1. A,, C,, D, and G, are bounded.
Proof. From Fundamental formula, we see that

_ba — (@wPn—2 = Qn-2bn) % + GuPpy — Qu_10,)Bs

qn (qn + qn-zan + qn—an) qn ’
,B _ _’_’g_ — (ann—z Qn—zr )a + (qn n -1 qn 11’ )Bn
dn (@p + @p00ty t 4,18, 4,

and from the condition (%) we see that for some K’
| P,| < K’ /y/q, and | R, | < K’ /+q, for all n.

On the other hand, we see that

I ann—l - qn—lpn | = | qnpn—l - qn—lpn l < K\/q-nr

| @Ry — iRy | = | @70y — @7, | < K /g, (by condition ().
Therefore from the formula (2,A), (2,C), (2,D) and (2,G), we see that 4,, C,,
D, and G, are bounded.

Lemma 2.2. B,, E, and H, are bounded if I, and F, are bounded.

Proof. As N and @, N@Q, have the same eigenvalue we have following
relations:

(1) A+ E, +I,=a+e+i
(2) AE,—B,D,+AI —C,G,+EUI — F,H,=ae— bd+ai— cg+ ei— fh
(3)  A,(E,I,— F,H) + B,(F,G,— D,I,) + C,(D,H, — E,G,)

= alei — fh) + b(fg — di) + c(dh — eg).
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We denote the quantities @ + ¢ + i, ae — bd + ai — c¢g + et — fh, and a(e:
— fh) + b(fg — di) + c(dh — eg) by ky, k, and k; respectively. From (1),
(2) and (3), we have the following formula:
B, _1/CD,—AJF, F,
) <H) =4 (Dnln —F,G, — D,,>
y <k2 — k@A, +1)+A+AIL+ I+ an,,>
k,— A,I,+C,G,)(k,— A, — L)

where
— D, — F,
a=det(_ DI+ F,G, C,D,— AF, )
By using Lemma 2.1, the relations (1) and (4), and the corollary 2.4 given
below we see that E,, B, and H, are also bounded.

By the simple calculation we have the following lemma.

Lemma 2.3. Let (1, 7, 0) be row eigenvectors of N for A. Then at, B, 7, 0
satisfy the following equations :

(2.2) (— bee + b*f+ bei — ¢"m)a’
+ (— ace + ce” — bed + 2abf— bfi+ aci — bef— cei — ’g + 2ch)a’
+ (— acd+ 2cde — bdf— cdi+ a’f— afi— aef+ efi— hf’ — 2cfDa
+ (cd® — adf+ dfi— gf ) =0,

(2.3) — (— bce + b*f+ bei — ") B°
+ (— abi+ bi® — beg + 2ach — che + abe — cih — bie — b’d + 2bh ) 5°
+ (— abg + 2bgi — cgh — bge + a’h — ahe — aih + ihe — W’ f+ 2dhb)B
+ (bg” — adh + ghe — dh®) =0,

(2.4) (— edg+ d*h+ dgi — g°H)7°
+ (— aeg + 2adh + agi + ¢’g — edh — egi — bdg — dih — g°c + 2hfg)7"
+ (— abg + a’h — aih + 2beg — aeh + eih — bdh — bgi — fh° + 2chg)r
+ (b’g — abh + bih — ch’) =0,

(2.5) — (— edg + b’h + dgi— g°H &’
+ (— aid + 2agf+ ade + i°d — igf— eid — cdg — gef— bd’ + 2 fhd) &"
+ (— acd + a’*f— aef+ 2cid — aif+ eif — cgf— cde — hf* + 2bfd) 6
+ (*d — acf+ cef— bf? =0.

Corollary 2.4. The determinant A in Lemma 2.2 is not equal to zero.

Proof. We find that the constant term of equation (2.2) is equal to — 4.
From the assumption that 1, &, 8 are linearly independent over @, a must
be an irrational number in the cubic field Q(A), i.e. a cubic irrational num-
ber. Therefore we have that 4 # 0.

Lemma 2.5. For the coefficients of the equations (2.4) and (2.5) we have
the following equalities :

(2.6) (— edg+ d°h + dgi — g%)

=d’/A(((di — gf)/d)’ — k,((di — gf)/d)* + k,((di — gf)/d) — k),
(2.7) (c’d— acf+ cef— bf?

=¥/ M(af— cd)/)° = ky((af — cd)/f)* + k,((af — cd)/f) — k).

By the way we konw the following Lemma called Sturm’s theorem.

Lemma 2.6 (Sturm’s theorem on (0,1) for cubic polynomials). For a
given cubic polynomial f(x) = ax® + bx® + cx + d, the cardinality of real
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solution f(x) = 0 in the interval (0,1) is equal to V(0) — V(1), where
V(x,) is the signature of * = x,, and the signature V(X) is given from the sequ-
ence of polynomials:

fi(x) = ax’ + bx’ +cx+d filr) = 3z°+ 2bx+ ¢

f(x) = —91; {(2b* — 6ac)x + bc — 3ad} f,(x) = 9a

— % . zD
4(b° — 3ac)
wheve D is the discriminant of f(x).

Proof of the theorem. From Lemma 2.2 we will show that I, and F, are
bounded. The proof is done by setting up 3* +, C,(1 +, C; +,C,*,C,-2! +
4 C,-3!) = 389 cases with respect to the signatures of discriminant of A and
determinant 4 and the condition of V(0), V(1) of e, B, 7, 6. We only set up
here the one case. Let us assume that

A-(1) the discriminant of A is negative,

A-(2) all equations (2.2)-(2.5) for e, B, 7 and 0 satisfy the condition

V() = 3 and V(1) = 2.

A-(3) the determinant 4 in Corollary 2.4 is positive.
On thse assumptions we will see that F, and I, are bounded. Indeed, from
V(0) = 3 we have f,(0) > 0, £,(0) <0 and £,(0) > 0. From the fact that
the equations (2.4) and (2.5) of 7 and J satisfies V(0) = 3, and from the for-
mulae (2.6) and (2.7) we see that
(2.8)  d{((di— gNH/d)’ — k,((di — gf)/d)* + k,((di — gf)/d) — k3} >0,
and
2.9 fHUaf— cd)/N° — k,((af — ed)/f)* + k,((af — cd)/f) — kb > 0.
On the other hand, from the fact that the equations (2.2) and (2.3) of a and 8
satisfies V(1) = 2 we also see that
(2.10) d(di—gNH/d’ — k,((di — gH/d)* + k,((di — gf)/d) — k) > K,
and
(2.11)  fHUaf—cd) /)’ — k,((af— cd)/ )P+ k,((af — cd)/f) — k3 > K,.
From (2.8) and (2.10) we see that (di — gf)/d is bounded. From (2.9) and
(2.11) we see that (af — cd)/f is bounded.

On the other hand, we know that 4,, C,, D, and G, are bounded. From

F,— C,D
the fact that —AL"F—”ﬁ is bounded, we know that F, is bounded. From
n
DI, — G,F,
the fact that —”-”—l—)# is bounded, we know that I, is also bounded.

n
By similar discussions for the other 389-1 cases, we have the bounded-
ness of these integer coefficients. Therefore, there exist m, > #», such that
N,, = N,,.
On the other hand, we know from Fundamental formula that
N,1, a,, B) = Q,'NQ, (1, a,, B) = 1/(ae, ***, @, )Q,'N'Q, a, p)
=A/ae, -+, @, )Q, A, a, p =21, a, B,).
Therefore we see that ‘(1, a,, B,) and ‘(1, @, B,,) are eigen vectors of A
for N,,, = N, and so we have (a,, B,) = (@, Bx,)-
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