72. Triangles and Elliptic Curves. III

By Takashi ONO
Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA M. J. A., Dec. 12, 1994)

This is a continuation of my preceding papers [2], [3] which will be referred to as (I), (II) in this paper. In (II), to each triple (l, m, n) of independent linear forms on \bar{k}^{3}, \bar{k} being the algebraic closure of a field k of characteristic not 2 , we associated a space $T=\left\{t \in \bar{k}^{3} ;\left(l^{2}-m^{2}\right)\left(m^{2}-n^{2}\right)\left(n^{2}-\right.\right.$ $\left.\left.l^{2}\right) \neq 0\right\}$ and studied a relationship of T to a family of plane elliptic curves. In this paper, we shall obtain a parametrization of T by classical elliptic functions when $k=\boldsymbol{C}$. ${ }^{1)}$
§1. Still over \bar{k}. Let $\Omega=\{\omega=(M, N) \in \bar{k} \times \bar{k} ; M N(M-N) \neq 0\}$. For each $\omega \in \Omega$, let

$$
\begin{equation*}
E_{0}(\omega)=\left\{t \in \bar{k}^{3} ; n^{2}+M=l^{2}, n^{2}+N=m^{2}\right\} \tag{1.1}
\end{equation*}
$$

an affine part of an elliptic curve in $P^{3}(\bar{k})$. Then we obtain a surjective map $p: T \rightarrow \Omega$ given by

$$
\begin{equation*}
p(t)=\left(l^{2}-n^{2}, m^{2}-n^{2}\right) . \tag{1.2}
\end{equation*}
$$

Since we observe that

$$
\begin{equation*}
p^{-1}(\omega)=E_{0}(\omega), \quad \omega \in \Omega, \tag{1.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
T=\bigcup_{\omega \in \Omega} E_{0}(\omega) \text { (disjoint). } \tag{1.4}
\end{equation*}
$$

To each $\omega=(M, N)$ we associate an elliptic curve E_{ω} in $\boldsymbol{P}^{2}(\bar{k})$ given (affinely) by

$$
\begin{equation*}
E_{\omega}: y^{2}=x(x+M)(x+N) \tag{1.5}
\end{equation*}
$$

Then we observe that a map $\pi_{0}: E_{0}(\omega) \rightarrow E_{\omega}, \omega=(M, N) \in \Omega$, defined by

$$
\begin{equation*}
\pi_{0}(t)=\left(n^{2}, \operatorname{lm} n\right) \tag{1.6}
\end{equation*}
$$

makes sense, for $x(x+M)(x+N)=n^{2}\left(n^{2}+M\right)\left(n^{2}+N\right)=(l m n)^{2}=y^{2}$.
§2. The map Θ_{τ}. Denote by $\vartheta_{i}(v \mid \tau), i=0,1,2,3, v \in \boldsymbol{C}, \tau \in \mathscr{H}$, the upper half plane, the Jacobi theta functions. When τ is fixed, we write $\vartheta_{i}(v)$ instead of $\vartheta_{i}(v \mid \tau)$. We write $\vartheta_{i}=\vartheta_{i}(0)=\vartheta_{i}(0 \mid \tau)$ for simplicity. The lattice $L_{\tau}=\boldsymbol{Z}+\boldsymbol{Z} \tau$ is the set of zeros of $\vartheta_{1}(v)$ and $\vartheta_{i}(v)$ and $\vartheta_{j}(v)$ have no common zeros if $i \neq j$. We introduce the following notation:

$$
\begin{gathered}
k=k(\tau)=\left(\frac{\vartheta_{2}}{\vartheta_{3}}\right)^{2}, k^{\prime}=k^{\prime}(\tau)=\left(\frac{\vartheta_{0}}{\vartheta_{3}}\right)^{2}, \sqrt{k}=\frac{\vartheta_{2}}{\vartheta_{3}}, \sqrt{k^{\prime}}=\frac{\vartheta_{0}}{\vartheta_{3}}, \\
\sqrt{\frac{k^{\prime}}{k}}=\frac{\sqrt{k^{\prime}}}{\sqrt{k}}=\frac{\vartheta_{0}}{\vartheta_{2}}, K=K(\tau)=\frac{\pi}{2} \vartheta_{3}^{2}, \quad u=2 K v=2 K(\tau) v,
\end{gathered}
$$

where u is taken to be a new complex variable.
Now define a map $\Theta_{\tau}: \boldsymbol{C} \rightarrow P^{3}(\boldsymbol{C})$ by

1) See [1] and/or [5] for standard notations.

$$
\begin{equation*}
\Theta_{\tau}(u)=\left(\vartheta_{0}(v): \frac{1}{\sqrt{k}} \vartheta_{1}(v): \sqrt{\frac{k^{\prime}}{k}} \vartheta_{2}(v): \sqrt{k^{\prime}} \vartheta_{3}(v)\right) \tag{2.1}
\end{equation*}
$$

Then Θ_{τ} induces an analytic group isomorphism:

$$
\begin{equation*}
\boldsymbol{C} /\left(4 K(\tau) L_{\tau}\right) \approx E\left(-1,-k^{2}(\tau)\right) \tag{2.2}
\end{equation*}
$$

where $E(M, N)$ denotes the space elliptic curve defined by

$$
\begin{align*}
E(M, N)=\left\{x=\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \in P^{3}(\boldsymbol{C})\right. & ; x_{0}^{2}+M x_{1}^{2} \tag{2.3}\\
& \left.=x_{2}^{2}, x_{0}^{2}+N x_{1}^{2}=x_{3}^{2}\right\}
\end{align*}
$$

where $M, N \in \boldsymbol{C}$ with $M N(M-N) \neq 0$ ([4] Theorem 4.2).
Next, we need Jacobi's elliptic functions, fixing a $\tau \in \mathscr{H}$:

$$
\operatorname{sn}(u, k)=\frac{1}{\sqrt{k}} \frac{\vartheta_{1}(v)}{\vartheta_{0}(v)}, c n(u, k)=\sqrt{\frac{k^{\prime}}{k}} \frac{\vartheta_{2}(v)}{\vartheta_{0}(v)}, d n(u, k)=\sqrt{k^{\prime}} \frac{\vartheta_{3}(v)}{\vartheta_{0}(v)}
$$

with relations

$$
\begin{equation*}
c n^{2}(u, k)=1-s n^{2}(u, k), d n^{2}(u, k)=1-k^{2} s n^{2}(u, k) \tag{2.4}
\end{equation*}
$$

Since $\operatorname{sn}(u, k)$ does not vanish on $\boldsymbol{C}-(4 k) L_{\tau}$, the following map $\Theta_{\tau}^{*}: C-$ $(4 k) L_{\tau} \rightarrow \boldsymbol{C}^{3}$ given by

$$
\begin{equation*}
\Theta_{\tau}^{*}(u)=\left(\frac{1}{\operatorname{sn}(u, k)}, \frac{c n(u, k)}{\operatorname{sn}(u, k)}, \frac{d n(u, k)}{\operatorname{sn}(u, k)}\right) \tag{2.5}
\end{equation*}
$$

makes sense. Finally, we call c an embedding of \boldsymbol{C}^{3} into $\boldsymbol{P}^{3}(\boldsymbol{C})$ given by

$$
\begin{equation*}
(x, y, z) \mapsto(x: 1: y: z) \tag{2.6}
\end{equation*}
$$

We verify the commutativity of the following diagram easily:

§3. A covering $S \rightarrow T$. Returning to the space T in the beginning of the paper, with $k=\boldsymbol{C}$ this time, denote by Φ the matrix in $G L_{3}(\boldsymbol{C})$ determined by the condition

$$
\Phi t=\left(\begin{array}{c}
l(t) \tag{3.1}\\
m(t) \\
n(t)
\end{array}\right), \quad t=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \boldsymbol{C}^{3}
$$

Therefore T is determined by Φ. From now on, we denote by T_{1} the space T corresponding to $\Phi=1 \in G L_{3}(\boldsymbol{C})$. Note that $T_{1}=\Phi T{ }^{2)}$ In order to make a covering space S of T as small as possible, we first let

$$
\begin{equation*}
\boldsymbol{C}^{\#}=\left\{\alpha=r e^{i \theta} ; r>0,0 \leqq \theta<\pi\right\} \tag{3.2}
\end{equation*}
$$

Next let

$$
\begin{equation*}
D(2)=D_{1} \cup D_{2} \tag{3.3}
\end{equation*}
$$

where $\quad D_{1}=\{z \in \mathscr{H} ; 0<\operatorname{Re} z \leqq 1,|z-1 / 2| \geqq 1 / 2\}, D_{2}=\{z \in \mathscr{H} ;-1$ $<\operatorname{Re} z \leqq 0,|z+1 / 2|>1 / 2\}$. In other words, $D(2)$ is the standard fundamental domain for $\Gamma(2) \backslash \mathscr{H}$, with
${ }^{2)}$ While working over algebraically closed fields such as \boldsymbol{C}, we may assume that $\Phi=1$ without loss of generality. However, the choice of $\Phi \neq 1$ matters to us when other fields are considered. See, e.g., (I) and (1.7) of (II) where $\Phi=\frac{1}{2}\left(\begin{array}{rrr}-1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ appears in connection with euclidean geometry.

$$
\Gamma(2)=\left\{A \in S L_{2}(\boldsymbol{Z}) ; A \equiv 1 \bmod 2\right\}
$$

Finally, we let
(3.4) $S=\left\{s=(\alpha, u, \tau) \in \boldsymbol{C}^{\#} \times \boldsymbol{C} \times D(2) ; u \notin 4 k(\tau) L_{\tau}\right\}$.

Defining a map $\psi: S \rightarrow T$ amounts to defining a map $\psi_{1}: S \rightarrow T_{1}$ such that $\psi_{1}=\Phi \psi$. So let us consider a map $\psi_{1}: S \rightarrow \boldsymbol{C}^{3}$ given by

$$
\phi_{1}(S)=\alpha\left(\begin{array}{l}
\frac{c n(u, k(\tau))}{\operatorname{sn}(u, k(\tau))} \tag{3.5}\\
\frac{d n(u, k(\tau))}{\operatorname{sn}(u, k(\tau))} \\
\frac{1}{\operatorname{sn}(u, k(\tau))}
\end{array}\right)
$$

We shall show that (3.5) is a covering $\phi_{1}: S \rightarrow T_{1}$ we are looking for. To be more precise, we prove the following three statements (3.6)-(3.8).

$$
\begin{equation*}
\psi_{1}(S) \subset T_{1} \tag{3.6}
\end{equation*}
$$

Proof. Writing $\psi_{1}(s)=t=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$, we have to show that $\left(a^{2}-b^{2}\right)$ $\left(b^{2}-c^{2}\right)\left(c^{2}-a^{2}\right) \neq 0$. This follows from (2.4), (3.5) and the property $k^{2}(\tau) \neq 0,1$.
Q.E.D.

$$
\begin{equation*}
\phi_{1}: S \rightarrow T_{1} \text { is surjective. } \tag{3.7}
\end{equation*}
$$

Proof. Take any $t=\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in T_{1}$. By (1.4), there is an $\omega=(M, N) \in \Omega$ such that $t \in E_{0}(\omega)$, i.e., $c^{2}+M=a^{2}, c^{2}+N=b^{2}$. Put $\alpha=\sqrt{-M}$. Since $N / M \neq 0,1$ and k^{2} is the modular function for $\Gamma(2)$ we can find a (unique) $\tau \in D(2)$ such that $k^{2}(\tau)=N / M$. By the above choice of α we have $\left(\frac{c}{\alpha}\right)^{2}-1=\left(\frac{a}{\alpha}\right)^{2},\left(\frac{c}{\alpha}\right)^{2}-k^{2}(\tau)=\left(\frac{b}{\alpha}\right)^{2}$ which means, by (2.3), that $\left(\frac{c}{\alpha}: 1\right.$: $\left.\frac{a}{\alpha}: \frac{b}{\alpha}\right) \in E\left(-1,-k^{2}(\tau)\right)$ and so, by (2.2), there is a $u \in C-4 K(\tau) L_{\tau}$ such that $\Theta_{\tau}(u)=\left(\frac{c}{\alpha}: 1: \frac{a}{\alpha}: \frac{b}{\alpha}\right)$. Now set $S=(\alpha, u, \tau)$. Then, from (2.5) -(2.7), (3.5), it follows that $\left(\frac{1}{\operatorname{sn}(u, k(\tau))}, \frac{c n(u, k(\tau))}{\operatorname{sn}(u, k(\tau))}, \frac{d n(u, k(\tau))}{\operatorname{sn}(u, k(\tau))}\right)=$ $\Theta_{\tau}^{*}(u)=\left(\frac{c}{\alpha}, \frac{a}{\alpha}, \frac{b}{\alpha}\right)$, i.e., $\psi_{1}(s)=t$.
Q.E.D.

For $s_{i}=\left(\alpha_{i}, u_{i}, \tau_{i}\right) \in S, i=1,2, \phi_{1}\left(s_{1}\right)=\phi_{1}\left(s_{2}\right)$ if and only if $\alpha_{1}=\alpha_{2}, \tau_{1}=\tau_{2}$ and $u_{1} \equiv u_{2} \bmod 4 K\left(\tau_{1}\right) L_{\tau_{1}}$.

Proof. The if-part is obvious as $4 K\left(\tau_{1}\right) L_{\tau_{1}}$ is the period lattice for $\operatorname{sn}\left(u, k\left(\tau_{1}\right)\right)$, etc. Conversely, suppose that $\phi_{1}\left(s_{1}\right)=\phi_{1}\left(s_{2}\right)$. Comparing squares of components of this vector equation, we find, using (2.4), that $\alpha_{2}^{2}=\alpha_{1}^{2}$ and $k^{2}\left(\tau_{1}\right)=k^{2}\left(\tau_{2}\right)$. Hence we have $\alpha_{2}=\alpha_{1}$ and $\tau_{2}=\tau_{1}$ because α_{i} $\in \boldsymbol{C}^{\#}$ and $\tau_{i} \in D(2)$. Therefore, putting $\tau=\tau_{1}=\tau_{2}, \psi_{1}\left(s_{1}\right)=\psi_{1}\left(s_{2}\right)$ implies $\Theta_{\tau}^{*}\left(u_{1}\right)=\Theta_{\tau}^{*}\left(u_{2}\right)$ and so $\Theta_{\tau}\left(u_{1}\right)=\Theta_{\tau}\left(u_{2}\right)$ by (2.7). Therefore we obtain $u_{1} \equiv u_{2} \bmod 4 K(\tau) L_{\tau}$ by (2.2).
Q.E.D.

Remark. For each $\tau \in D(2)$ we write $P_{\tau}^{*}=P_{\tau}-\{0\}$ where P_{τ} is the
standard fundamental domain for $\boldsymbol{C} /\left(4 K(\tau) L_{\tau}\right)$. Then the statements (3.6)-(3.8) means that for the space T (determined by Φ) the map $\psi(=$ $\Phi^{-1} \psi_{1}$) induces a bijection

$$
\begin{equation*}
T \approx C^{\#} \times \bigcup_{\tau \in D(2)} P_{\tau}^{*} \tag{3.9}
\end{equation*}
$$

an analytic parametrization of the complement of six lines $\left(l^{2}-m^{2}\right)\left(m^{2}-\right.$ $\left.n^{2}\right)\left(n^{2}-l^{2}\right)=0$ in C^{3}.
§4. Differentiation. We shall look at analytically the map π_{0} in (1.6). Let T be given by Φ as in (3.1). If $\phi(s)=t, s \in S, t \in T$, then $\phi_{1}(s)=\Phi t$. By (3.5), we obtain a system of equations:

$$
\begin{equation*}
l(t)=\alpha \frac{c n(u, k(\tau))}{\operatorname{sn}(u, k(\tau))}, m(t)=\alpha \frac{d n(u, k(\tau))}{\operatorname{sn}(u, k(\tau))}, n(t)=\alpha \frac{1}{\operatorname{sn}(u, k(\tau))} \tag{4.1}
\end{equation*}
$$

If we let $x=x(s)=n^{2}(t), y=y(s)=l(t) m(t) n(t)$, then there is a relation

$$
\begin{equation*}
y^{2}=x(x+M)(x+N) \tag{4.2}
\end{equation*}
$$

with $M=l^{2}(t)-n^{2}(t), N=m^{2}(t)-n^{2}(t)$. Substituting (4.1) in (4.2), we obtain, by (2.4)

$$
\begin{equation*}
M=-\alpha^{2}, N=-k^{2}(\tau) \alpha^{2} \tag{4.3}
\end{equation*}
$$

i.e., M, N do not involve u. Hence, for fixed α, τ, (4.2) is a plane elliptic curve. We see easily that

$$
\begin{equation*}
y=\frac{\alpha}{2} \frac{\partial x}{\partial u} \tag{4.4}
\end{equation*}
$$

Substituting (4.4) in (4.2), we obtain

$$
\begin{equation*}
\alpha^{2}\left(\frac{\partial x}{\partial u}\right)^{2}=4 x\left(x-\alpha^{2}\right)\left(x-k^{2} \alpha^{2}\right) \tag{4.5}
\end{equation*}
$$

References

[1] Hurwitz, A., und Courant. R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. Springer, New York (1964).
[2] Ono, T.: Triangles and Elliptic Curves. Proc. Japan Acad., 70A, 106-108 (1994).
[3] -: Tringles and Elliptic Curves. II. ibid., 70A, 223-225 (1994).
[4] -: Variations on a Theme of Euler. Plenum, New York (to appear)
[5] Tannery, J., et Molk, J.: Éléments de la Théorie des Fonctions Elliptiques, tomes I-IV, Chelsea, New York (1972).

