72. Triangles and Elliptic Curves. III

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA M. J. A., Dec. 12, 1994)

This is a continuation of my preceding papers [2], [3] which will be referred to as (I), (II) in this paper. In (II), to each triple (l, m, n) of independent linear forms on \bar{k}^3 , \bar{k} being the algebraic closure of a field k of characteristic not 2, we associated a space $T = \{t \in \bar{k}^3 : (l^2 - m^2)(m^2 - n^2)(n^2 - l^2) \neq 0\}$ and studied a relationship of T to a family of plane elliptic curves. In this paper, we shall obtain a parametrization of T by classical elliptic functions when k = C.¹⁾

§1. Still over \bar{k} . Let $\Omega = \{\omega = (M, N) \in \bar{k} \times \bar{k}; MN(M-N) \neq 0\}$. For each $\omega \in \Omega$, let

(1.1) $E_0(\omega) = \{t \in \overline{k}^3; n^2 + M = l^2, n^2 + N = m^2\},\$

an affine part of an elliptic curve in $P^3(\bar{k})$. Then we obtain a surjective map $p: T \to \Omega$ given by

(1.2) Since we observe that (1.3) we have (1.4) $p(t) = (l^2 - n^2, m^2 - n^2).$ $p^{-1}(\omega) = E_0(\omega), \quad \omega \in \Omega,$ $T = \bigcup_{\omega \in \Omega} E_0(\omega) \text{ (disjoint).}$

To each $\omega = (M, N)$ we associate an elliptic curve E_{ω} in $P^{2}(\bar{k})$ given (affinely) by

(1.5) $E_{\omega}: y^2 = x(x+M)(x+N).$

Then we observe that a map $\pi_0: E_0(\omega) \to E_\omega$, $\omega = (M, N) \in \Omega$, defined by (1.6) $\pi_0(t) = (n^2, lmn)$

makes sense, for $x(x + M)(x + N) = n^2(n^2 + M)(n^2 + N) = (lmn)^2 = y^2$. **§2.** The map Θ_{τ} . Denote by $\vartheta_i(v \mid \tau)$, $i = 0, 1, 2, 3, v \in C$, $\tau \in \mathcal{H}$, the upper half plane, the Jacobi theta functions. When τ is fixed, we write $\vartheta_i(v)$ instead of $\vartheta_i(v \mid \tau)$. We write $\vartheta_i = \vartheta_i(0) = \vartheta_i(0 \mid \tau)$ for simplicity. The lattice $L_{\tau} = \mathbf{Z} + \mathbf{Z}\tau$ is the set of zeros of $\vartheta_1(v)$ and $\vartheta_i(v)$ and

$$\begin{split} \vartheta_{j}(v) \text{ have no common zeros if } i \neq j. \text{ We introduce the following notation:} \\ k = k(\tau) = \left(\frac{\vartheta_{2}}{\vartheta_{3}}\right)^{2}, \, k' = k'(\tau) = \left(\frac{\vartheta_{0}}{\vartheta_{3}}\right)^{2}, \, \sqrt{k} = \frac{\vartheta_{2}}{\vartheta_{3}}, \, \sqrt{k'} = \frac{\vartheta_{0}}{\vartheta_{3}}, \\ \sqrt{\frac{k'}{k}} = \frac{\sqrt{k'}}{\sqrt{k}} = \frac{\vartheta_{0}}{\vartheta_{2}}, \, K = K(\tau) = \frac{\pi}{2} \vartheta_{3}^{2}, \quad u = 2Kv = 2K(\tau)v, \end{split}$$

where u is taken to be a new complex variable.

Now define a map $\Theta_{\tau}: C \to P^3(C)$ by

¹⁾ See [1] and/or [5] for standard notations.

(2.1)
$$\Theta_{\tau}(u) = (\vartheta_0(v) : \frac{1}{\sqrt{k}} \vartheta_1(v) : \sqrt{\frac{k'}{k}} \vartheta_2(v) : \sqrt{k'} \vartheta_3(v)).$$

Then Θ_{τ} induces an analytic group isomorphism: $C/(4K(\tau)L_{\tau}) \approx E(-1, -k^{2}(\tau)),$ (2.2)where E(M, N) denotes the space elliptic curve defined by $E(M, N) = \{x = (x_0 : x_1 : x_2 : x_3) \in P^3(C) ; x_0^2 + Mx_1^2 = x_2^2, x_0^2 + Nx_1^2 = x_3^2\},\$ (2.3)

where M, $N \in C$ with $MN(M - N) \neq 0$ ([4] Theorem 4.2). Next, we need Iacobi's elliptic functions, fixing a $\tau \in \mathcal{H}$:

$$sn(u, k) = \frac{1}{\sqrt{k}} \frac{\vartheta_1(v)}{\vartheta_0(v)}, \ cn(u, k) = \sqrt{\frac{k}{k}} \frac{\vartheta_2(v)}{\vartheta_0(v)}, \ dn(u, k) = \sqrt{k'} \frac{\vartheta_3(v)}{\vartheta_0(v)},$$

with relations (2.4) $cn^{2}(u, k) = 1 - sn^{2}(u, k), dn^{2}(u, k) = 1 - k^{2}sn^{2}(u, k).$ Since sn(u, k) does not vanish on $C - (4k)L_{\tau}$, the following map $\Theta_{\tau}^{*}: C (4k)L_{\tau} \rightarrow C^3$ given by

(2.5)
$$\Theta_{\tau}^{*}(u) = \left(\frac{1}{sn(u, k)}, \frac{cn(u, k)}{sn(u, k)}, \frac{dn(u, k)}{sn(u, k)}\right),$$

makes sense. Finally, we call ι an embedding of C^3 into $P^3(C)$ given by $(x, y, z) \mapsto (x:1:y:z)$ (2.6)

We verify the commutativity of the following diagram easily:

$$(2.7) \qquad \begin{array}{c} C & \xrightarrow{\Theta_{\tau}} \\ & & & \\ & & \\ & & \\ & & \\ C - (4K)L_{\tau} & \xrightarrow{\Theta_{\tau}^{*}} \\ & & C^{3} \end{array}$$

§3. A covering $S \rightarrow T$. Returning to the space T in the beginning of the paper, with k=C this time, denote by \varPhi the matrix in $GL_3(C)$ determined by the condition

(3.1)
$$\Phi t = \begin{pmatrix} l(t) \\ m(t) \\ n(t) \end{pmatrix}, \quad t = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in C^3$$

Therefore T is determined by \varPhi . From now on, we denote by T_1 the space Tcorresponding to $\Phi = 1 \in GL_3(C)$. Note that $T_1 = \Phi T^{(2)}$. In order to make a covering space S of T as small as possible, we first let

(3.2)
$$C^* = \{ \alpha = re^{i\theta}; r > 0, 0 \leq \theta < \pi \}.$$

Next let

(3.3) $D(2) = D_1 \cup D_2$ where $D_1 = \{z \in \mathcal{H}; 0 < \text{Re } z \leq 1, |z - 1/2| \geq 1/2\}, D_2 = \{z \in \mathcal{H}; -1 < \text{Re } z \leq 0, |z + 1/2| > 1/2\}$. In other words, D(2) is the standard fundamental domain for $\Gamma(2) \setminus \mathscr{H}$, with

²⁾ While working over algebraically closed fields such as C, we may assume that arPhi=1 without loss of generality. However, the choice of arPhi
eq 1 matters to us when other fields are considered. See, e.g., (I) and (1.7) of (II) where $\Phi = \frac{1}{2} \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ appears in connection with euclidean geometry.

$$\Gamma(2) = \{ A \in SL_2(\mathbb{Z}) ; A \equiv 1 \mod 2 \}.$$

Finally, we let

(3.4) $S = \{s = (\alpha, u, \tau) \in C^* \times C \times D(2) ; u \notin 4k(\tau)L_{\tau}\}.$ Defining a map $\psi: S \to T$ amounts to defining a map $\psi_1: S \to T_1$ such that $\psi_1 = \Phi \psi$. So let us consider a map $\psi_1: S \to C^3$ given by

(3.5)
$$\phi_1(S) = \alpha \begin{pmatrix} \frac{cn(u, k(\tau))}{sn(u, k(\tau))} \\ \frac{dn(u, k(\tau))}{sn(u, k(\tau))} \\ \frac{1}{sn(u, k(\tau))} \end{pmatrix}$$

We shall show that (3.5) is a covering $\psi_1: S \to T_1$ we are looking for. To be more precise, we prove the following three statements (3.6)-(3.8). (3.6) $\psi_1(S) \subset T_1$.

$$\psi_1(S) \subset T_1$$

Proof. Writing
$$\psi_1(s) = t = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
, we have to show that $(a^2 - b^2)$

 $(b^2 - c^2)(c^2 - a^2) \neq 0$. This follows from (2.4), (3.5) and the property $k^2(\tau) \neq 0,1$. (3.7) $\phi_1: S \rightarrow T_1$ is surjective.

$$\psi_1: S \to T_1 \text{ is surjective}$$

Proof. Take any
$$t = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in T_1$$
. By (1.4), there is an $\omega = (M, N) \in \Omega$

such that $t \in E_0(\omega)$, i.e., $c^2 + M = a^2$, $c^2 + N = b^2$. Put $\alpha = \sqrt{-M}$. Since $N/M \neq 0,1$ and k^2 is the modular function for $\Gamma(2)$ we can find a (unique) $\tau \in D(2)$ such that $k^2(\tau) = N/M$. By the above choice of α we have $\left(\frac{c}{\alpha}\right)^2 - 1 = \left(\frac{a}{\alpha}\right)^2$, $\left(\frac{c}{\alpha}\right)^2 - k^2(\tau) = \left(\frac{b}{\alpha}\right)^2$ which means, by (2.3), that $\left(\frac{c}{\alpha}:1:\frac{a}{\alpha}:\frac{b}{\alpha}\right) \in E(-1, -k^2(\tau))$ and so, by (2.2), there is a $u \in C - 4K(\tau)L_{\tau}$ such that $\Theta_{\tau}(u) = \left(\frac{c}{\alpha}:1:\frac{a}{\alpha}:\frac{b}{\alpha}\right)$. Now set $S = (\alpha, u, \tau)$. Then, from (2.5) -(2.7), (3.5), it follows that $\left(\frac{1}{sn(u, k(\tau))}, \frac{cn(u, k(\tau))}{sn(u, k(\tau))}, \frac{dn(u, k(\tau))}{sn(u, k(\tau))}\right) = \Theta_{\tau}^*(u) = \left(\frac{c}{\alpha}, \frac{a}{\alpha}, \frac{b}{\alpha}\right)$, i.e., $\psi_1(s) = t$.

(3.8) For $s_i = (\alpha_i, u_i, \tau_i) \in S$, $i = 1, 2, \psi_1(s_1) = \psi_1(s_2)$ if and only if $\alpha_1 = \alpha_2, \tau_1 = \tau_2$ and $u_1 \equiv u_2 \mod 4K(\tau_1)L_{\tau_1}$.

Proof. The if-part is obvious as $4K(\tau_1)L_{\tau_1}$ is the period lattice for $sn(u, k(\tau_1))$, etc. Conversely, suppose that $\psi_1(s_1) = \psi_1(s_2)$. Comparing squares of components of this vector equation, we find, using (2.4), that $\alpha_2^2 = \alpha_1^2$ and $k^2(\tau_1) = k^2(\tau_2)$. Hence we have $\alpha_2 = \alpha_1$ and $\tau_2 = \tau_1$ because $\alpha_i \in C^*$ and $\tau_i \in D(2)$. Therefore, putting $\tau = \tau_1 = \tau_2, \psi_1(s_1) = \psi_1(s_2)$ implies $\Theta_{\tau}^*(u_1) = \Theta_{\tau}^*(u_2)$ and so $\Theta_{\tau}(u_1) = \Theta_{\tau}(u_2)$ by (2.7). Therefore we obtain $u_1 \equiv u_2 \mod 4K(\tau)L_{\tau}$ by (2.2).

Remark. For each $\tau \in D(2)$ we write $P_{\tau}^* = P_{\tau} - \{0\}$ where P_{τ} is the

No. 10]

standard fundamental domain for $C/(4K(\tau)L_{\tau})$. Then the statements (3.6)-(3.8) means that for the space T (determined by Φ) the map $\psi(=\Phi^{-1}\psi_1)$ induces a bijection

(3.9)
$$T \approx C^{\#} \times \bigcup_{\tau \in D(2)} P_{\tau}^{*},$$

an analytic parametrization of the complement of six lines $(l^2 - m^2)(m^2 - n^2)(n^2 - l^2) = 0$ in C^3 .

§4. Differentiation. We shall look at analytically the map π_0 in (1.6). Let T be given by Φ as in (3.1). If $\psi(s) = t$, $s \in S$, $t \in T$, then $\psi_1(s) = \Phi t$. By (3.5), we obtain a system of equations:

(4.1)
$$l(t) = \alpha \frac{cn(u, k(\tau))}{sn(u, k(\tau))}, m(t) = \alpha \frac{dn(u, k(\tau))}{sn(u, k(\tau))}, n(t) = \alpha \frac{1}{sn(u, k(\tau))},$$

If we let $x = x(s) = n^2(t), y = y(s) = l(t)m(t)n(t)$, then there is a relation

(4.2) $y^2 = x(x + M)(x + N)$ with $M = l^2(t) - n^2(t)$, $N = m^2(t) - n^2(t)$. Substituting (4.1) in (4.2), we obtain, by (2.4)

(4.3)
$$M = -\alpha^2, N = -k^2(\tau)\alpha^2,$$

i.e., M, N do not involve u. Hence, for fixed α , τ , (4.2) is a plane elliptic curve. We see easily that

(4.4)
$$y = \frac{\alpha}{2} \frac{\partial x}{\partial u}.$$

Substituting (4.4) in (4.2), we obtain

(4.5)
$$\alpha^2 \left(\frac{\partial x}{\partial u}\right)^2 = 4x(x-\alpha^2)(x-k^2\alpha^2).$$

References

- Hurwitz, A., und Courant. R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. Springer, New York (1964).
- [2] Ono, T.: Triangles and Elliptic Curves. Proc. Japan Acad., 70A, 106-108 (1994).
- [3] ----: Tringles and Elliptic Curves. II. ibid., **70A**, 223-225 (1994).
- [4] ----: Variations on a Theme of Euler. Plenum, New York (to appear)
- [5] Tannery, J., et Molk, J.: Éléments de la Théorie des Fonctions Elliptiques, tomes I-IV, Chelsea, New York (1972).