Stable Limit Distributions over a Nilpotent Lie Group

By Hiroshi KUNITA

Graduate School of Mathematics, Kyushu University (Communicated by Kiyosi ITÔ, M. J. A., Jan. 12, 1995)

In the previous paper [3], the author defined a convolution semigroup $\{\mu_t\}_{t>0}$ of stable distributions over a simply connected nilpotent Lie group G in connection with a dilation $\{\gamma_r\}_{r>0}$. It corresponds to a convolution semigroup of strictly operator-stable distributions in the case where G is a Euclidean space. In this paper, motivated by Sharpe [4], we shall characterize stable distributions over a Lie group as a certain limit distribution. We show that our definition of stable distributions coincides with that given in [3], provided that the distributions are full. Then we shall discuss the domain of the normal attraction of stable distributions over a simply connected nilpotent Lie group.

1. Stable distributions and associated convolution semigroup. Let G be a Lie group and let \mathscr{G} be its left invariant Lie algebra. For two (probability) distributions μ and ν over G, their convolution is defined by

$$\mu * \nu(E) = \int_{G} \nu(\sigma^{-1}E) \mu(d\sigma).$$

The *n*-times convolution of μ is denoted by μ^{n*} . Let φ be a continuous map from G (or \mathscr{G}) into G (or \mathscr{G}). For a distribution μ over G (or \mathscr{G}), we define a distribution $\varphi\mu$ by $\varphi\mu(E) = \mu(\varphi^{-1}(E))$. Let β be an automorphism of G, i.e., $\beta: G \to G$ is a diffeomorphism and satisfies $\beta(\sigma\tau) = \beta(\sigma)\beta(\tau)$ for any $\sigma, \tau \in G$. Then we have the relation $\beta(\mu*\nu) = \beta\mu*\beta\nu$ for any distributions μ and ν over G. A distribution μ over G (or \mathscr{G}) is called *full* if μ is not supported by any proper subgroup of G (or proper subalgebra of \mathscr{G}).

Let $N = \{1, 2, ...\}$ be the set of all positive integers. Let $\{\beta_n\}_{n \in N}$ be a sequence of automorphisms of G. It is called a *semigroup* if $\beta_k \beta_l = \beta_{kl}$ holds for all $k, l \in N$. A distribution μ over Gis called *stable* if there exists a sequence $\{\beta_n\}_{n \in N}$ of automorphisms of G and a distribution ν over G such that $\beta_n \nu^{n*}$ converges weakly to μ as $n \to \infty$. We will give a characterization of stable distributions in the case where the Lie group is simply connected and nilpotent. It is known that if G is a simply connected nilpotent Lie group, the exponential map: $\exp: \mathscr{G} \to G$ is a diffeomorphism. Hence G is non-compact. Denote the inverse map of exp by log. Then μ over G is full if and only if log μ over \mathscr{G} is full.

Theorem 1.1. Let μ be a full distribution over a simply connected nilpotent Lie group G. Then μ is stable if and only if there exists a sequence $\{\gamma_k\}_{k \in \mathbb{N}}$ of automorphisms of G such that $\mu^{k*} = \gamma_k \mu$ holds for all $k \in \mathbb{N}$

Before we proceed to the proof of the theorem, we need two facts. Let β' be a linear map of \mathscr{G} . It is called an *automorphism of* \mathscr{G} if it is a one to one, onto map and satisfies $\beta'[X, Y] = [\beta'X, \beta'Y]$ for all $X, Y \in \mathscr{G}$. Now if β is an automorphism of \mathcal{G} , the differential $d\beta$ defines an automorphism of \mathscr{G} . Conversely let β' be an automorphism of \mathscr{G} . If G is simply connected and nilpotent, there exists a unique automorphism of G such that its differential coinsides with β' . Indeed, define $\beta: G \to G$ by $\beta(\exp X) = \exp \beta' X$. Then, using Champbel-Hausdorff formula we have

$\beta(\exp X \exp Y)$

 $= \beta(\exp(X + Y + 1/2[X, Y] + \cdots))$ = $\exp(\beta'X + \beta'Y + 1/2[\beta'X, \beta'Y] + \cdots)$

$$= \exp(\beta' X) \exp(\beta' Y) = \beta(\exp X)\beta(\exp Y).$$

Therefore β is an automorphism of G and satisfies $d\beta = \beta'$. The uniqueness will be obvious.

Another fact we need is stated in the following lemma.

Lemma (cf. Sharpe [4] and Eurek-Mason [1]). Let $\{m^{(n)}\}$ be a sequence of distributions over the Lie algebra \mathcal{G} converging weakly to a full distribution m. Suppose that there exists a sequence $\{\beta^{(n)}\}$ of automorphisms of \mathcal{G} such that $\beta^{(n)}m^{(n)}$ converges weakly to a full distribution \tilde{m} . Then a certain subsequence $\{\beta^{(n')}\}$ converges to an automorphism β of \mathcal{G} such that $\beta m = \tilde{m}$.

Proof. Let V be the linear support of m, spanned by $\{Y_1, \ldots, Y_r\}$, which generates the Lie algebra 9. We can show similarly as in [1] Lemma 2.2.2, that the sequence $\{\beta^{(n)}Y_i\}$ is bounded for any $i = 1, \ldots, r$. Since any element X_i of the basis $\{X_1, \ldots, X_d\}$ of \mathscr{G} is written as a linear sum of the elements of the forms

 $[Y_{i_1}, [Y_{i_2}, [\cdots, [Y_{i_{m-1}}, [Y_{i_m}]]\cdots] \\ (i_1, \ldots, i_m \in \{1, \ldots, r\}), \text{ the sequence } \{\beta^{(n)}X_j\} \text{ is}$ also bounded for any j. Consequently, a subsequence $\{\beta^{(n')}\}$ of $\{\beta^{(n)}\}$ converges to an endomorphism β of \mathscr{G} . Then the sequence $\{\beta^{(n')}m^{(n')}\}$ converges weakly to βm and satisfies $\beta m = \tilde{m}$. Since βm is full, β is an automorphism.

Proof of Theorem 1.1. "If" part is obvious. We shall prove the "only if" part. Suppose that μ is stable. Then there exists a sequence $\{\beta_n\}_{n \in \mathbb{N}}$ of automorphisms of G and a distribution ν over Gsuch that $\mu = \lim_{n \to \infty} \beta_n \nu^{n*}$. Then we have μ^{k*}

such that $\mu = \lim_{n \to \infty} \beta_n \nu^{n*}$. Then we have $\mu^{k*} = \lim_{n \to \infty} (\beta_n \nu^{n*})^{k*}$ for any positive integer k. Note that $(\beta_n \nu^{n*})^{k*} = \beta_n \nu^{nk*}$. Then we obtain $\mu^{k*}_{k} = \lim_{n \to \infty} (\beta_n \beta_n^{-1}) \beta_{nk} \nu^{nk*}$. For each $k \in N$, set $\eta_k^{(n)} = \beta_{nk} \nu^{nk*}$ and $\gamma_k^{(n)} = \beta_n \beta_{nk}^{-1}$. Then we have $\eta_k^{(n)} \to \mu$ and $\gamma_k^{(n)} \eta_k^{(n)} \to \mu^{k*}$ as $n \to \infty$. Let $d\gamma_k^{(n)}$ be the differential of $\gamma_k^{(n)}$. Then $\gamma_k^{(n)} (\exp X) = \exp(d\gamma_k^{(n)}X)$, or equivalently, $\log \gamma_k^{(n)}(\sigma) = d\gamma_k^{(n)} \log \sigma$. Therefore we have $\log \gamma_k^{(n)} \eta_k^{(n)} = d\gamma_k^{(n)} \log \eta_k^{(n)}$. Define distributions over the Lie algebra \mathscr{G} by $m^{(n)} = \log \eta_k^{(n)}$, $m = \log \mu$ and $\tilde{m} = \log \mu^{k*}$. Then we have $m^{(n)} \to m$ and $d\gamma_k^{(m)} m^{(n)} \to \tilde{m}$ as $n \to \infty$. Since m is full, \tilde{m} is also full. Therefore, there exists an automorphis also full. Therefore, there exists an automorphism γ'_k on \mathscr{G} such that $\gamma'_k m = \tilde{m}$ by the above lemma. We can choose $\{\gamma'_k\}_{k \in N}$ such that $\gamma'_k \gamma'_l =$ γ'_{kl} for all $k, l \in N$. Now for each $k \in N$ define an automorphism γ_k of G by $\gamma_k(\sigma) = \exp(\gamma'_k)$ $\log \sigma$). Then $\{\gamma_k\}_{k \in \mathbb{N}}$ is a semigroup of automorphisms satisfying $\gamma_k \mu = \mu^{k*}$ for all $k \in N$. The proof is complete.

Let $\{\mu_t\}_{t>0}$ be a family of distributions over G. It is called a convolution semigroup if it satisfies (a) $\mu_t * \mu_s = \mu_{t+s}$ for any s, t > 0, and (b) $\mu_t \rightarrow \delta_e$ as $t \rightarrow 0$, where δ_e is a unit measure at the point e (identity of G). In particular if each μ_t is a stable distribution, it is called a convolution semigroup of stable distributions.

Let $\{\gamma_t\}_{t>0}$ be a family of automorphisms of G. It is called a one parameter group if $\gamma_t(\sigma)$ is continuous in $(0, \infty) \times G$ and satisfies $\gamma_t \gamma_s =$ γ_{ts} for all t, s > 0. Further, if $\gamma_t(\sigma) \rightarrow e$ holds uniformly on compact sets of G as $t \rightarrow 0$, it is called a dilation. It is known that if a dilation exists on a Lie group G, it is simply connected and nilpotent. See [3]. Given a dilation, the family of differentials $\{d\gamma_t\}_{t>0}$ defines a one parameter group of automorphisms of G. Further, there exists a linear map $Q: \mathscr{G} \to \mathscr{G}$ such that $d\gamma_t =$ $\exp(\log t) Q \equiv t^{Q}$. The linear map Q is called the exponent of the dilation. Note that real parts of eigen values of Q are all positive.

Theorem 1.2. Let μ be a full stable distribution over a simply connected nilpotent Lie group G. Then there exists a unique convolution semigroup $\{\mu_i\}_{i>0}$ of stable distributions such that $\mu_1 = \mu$. Furthermore there exists a dilation $\{\gamma_t\}_{t>0}$ such that $\mu_t = \gamma_t \mu$ holds for all t > 0.

Proof. Let $\{\gamma_k\}_{k \in \mathbb{N}}$ be the sequence of automorphisms defined in Theorem 1.1. We first consider the case where it is a semigroup. For k, $l \in N$, we set $\gamma_{l/k} = \gamma_k^{-1} \gamma_l$. It is well defined since $\gamma_{mk}^{-1} \gamma_{ml} = \gamma_k^{-1} \gamma_l$ holds for all $m \in N$. Then $\{\gamma_r\}_{r\in O^+}$ (positive rationals) is a one parameter group of automorphisms of G. Let t > 0 be an arbitrary real number. Then there exists a sequence of positive rationals $\{r_n\}$ such that $\{\gamma_{r_n}\}$ converges to an automorphism γ_t . We can prove that γ_t does not depend on the choice of sequences $\{r_n\}$ converging to t, and $\{\gamma_t\}_{t>0}$ satisfies $\gamma_s \gamma_t = \gamma_{st}$ for all s, t > 0. Moreover, γ_t is continuous in t.

Now for each t > 0, define a distribution μ_t by $\mu_t = \gamma_t \mu$. Then $\{\mu_t\}_{t>0}$ satisfies $\mu_t * \mu_s = \mu_{s+t}$ for all s, t > 0. Indeed, if s, t are rationals such that s = k/n and t = l/n, we have $\mu_{k/n} * \mu_{l/n} = \gamma_n^{-1} \mu^{k*} * \gamma_n^{-1} \mu^{l*} = \gamma_n^{-1} \mu^{(k+1)*} = \mu_{(k+1)/n}$. Therefore $\{\mu_t\}_{t>0}$ satisfies $\mu_s * \mu_t = \mu_{s+t}$ for positive rationals s,t. Since μ_t is continuous in t > 0, the equality holds for all positive reals s, t. Therefore $\{\mu_t\}_{t>0}$ has the convolution property. We have further, $\mu_t = \gamma_{t/n} \mu^{n*}$, so that μ_t is stable for all t>0. We shall prove $\mu_t \rightarrow \delta_e$ as $t \rightarrow 0$. Let $\bar{G}=$ $G \cup \{\infty\}$ be the one point compactification of G. Then it is a topological semigroup by setting σ^{∞} $= \infty \sigma = \infty$ and $\infty \infty = \infty$. For each t > 0, μ_t can be considered as a measure on the compact space \bar{G} . Now let μ_0 be any accumulation point of $\{\mu_t\}_{t>0}$ as $t \to 0$. It is a distribution over \overline{G} and satisfies $\mu_0 = \mu_0 * \mu_0$, which implies $\mu_0 = \delta_e$ or $\mu_0 = \delta_{\infty}$. We have further $\mu_t * \mu_0 = \mu_t$, which excludes the case $\mu_0 = \delta_{\infty}$. This proves $\mu_t \rightarrow \delta_e$ as

 $t \to 0$. Now since $\mu_t \to \delta_e$, we have $\log \mu_t \to \delta_0$. Note the equality $\log \mu_t = t^Q \log \mu$. Since $\log \mu$ is a full distribution, $t^Q \to 0$ as $t \to 0$ or equivalently $\gamma_t(\sigma) \to e$ uniformly on compact sets of G as $t \to 0$. Therefore $\{\gamma_t\}_{t>0}$ is a dilation.

Now in case where $\{\gamma_k\}_{k\in N}$ is not a semigroup, let \mathscr{A} (or \mathscr{N}) be the group generated by automorphisms β of G such that $\beta\mu = \mu^{k*}$ for some $k \in N$ (or $\beta\mu = \mu$). Then \mathscr{N} is a normal subgroup of \mathscr{A} . Consider the factor group \mathscr{A}/\mathscr{N} . Then $\hat{\gamma}_k \equiv \gamma_k \mathscr{N}, k \in N$ define a semigroup in the factor group. A certain modification of the above argument shows that there exists a dilation $\{\gamma_t\}_{t>0}$ and $\mu_t \equiv \gamma_t \mu, t > 0$ defines a convolution semigroup of stable distributions.

Conversely suppose that we are given a convolution semigroup of stable distributions $\{\hat{\mu}_t\}_{t>0}$ such that $\tilde{\mu}_1 = \mu$. Let $\{\gamma_t\}_{t>0}$ be the dilation constructed above. We will prove that $\hat{\mu}_t = \gamma_t \mu$ holds for all t > 0, which implies the uniqueness of the convolution semigroup $\{\hat{\mu}_t\}_{t>0}$. For each positive integer n, there exists an automorphism $\delta^{(n)}$ such that $\delta^{(n)}\hat{\mu}_{1/n} = \hat{\mu}_1 = \mu$ since $\hat{\mu}_{1/n}$ is stable. Then we have $\delta^{(n)}\mu = \hat{\mu}_n = \mu^{n*} = \gamma_n\mu$. Therefore $\gamma_{n^{\circ}}^{-1}\delta^{(n)} \in \mathcal{N}$. Since \mathcal{N} is a normal subgroup of \mathcal{A} , there exists $\beta^{(n)} \in \mathcal{N}$ such that $\delta^{(n)} = \gamma_{1/n}(\beta^{(n)})^{-1}$. Consequently, $\hat{\mu}_{1/n} = (\delta^{(n)})^{-1}\mu = \gamma_{1/n}\mu$, which implies $\hat{\mu}_{k/n} = \gamma_{k/n}\mu$ for any positive integer k. Since $\hat{\mu}_t$ is continuous in t > 0, we get the equality $\hat{\mu}_t = \gamma_t \mu$ for all real t > 0. The proof is complete.

2. Domain of normal attraction of stable distributions. Let G be a simply connected nilpotent Lie group equipped with a dilation $\{\gamma_t\}_{t>0}$. Let \mathscr{G} be its Lie algebra, where an inner product \langle , \rangle and the associated norm | are defined on \mathscr{G} . Let $\xi_1, \ldots, \xi_n, \ldots$ be a sequence of independent random variables with values in G with the identical distribution. Then the products $\psi_n =$ $\xi_1 \cdots \xi_n, n = 1, 2, \ldots$ define a random walk on the group G. We shall discuss the weak convergence of the sequence $\{\psi_n\}$ as $n \to \infty$ by constricting its spacial scale through the inverse of $\{\gamma_n\}$. Namely we consider a sequence of G-valued random variables $\varphi^{(n)} = \gamma_n^{-1}(\varphi_n)$. Let $\mu^{(n)}$ be their distributions. If the sequence $\{\mu^{(n)}\}$ converges weakly, the limit distribution μ should be stable with respect to the dilation $\{\gamma_k\}$ in view of Theorem 1.1. The identical distribution ν of the random variables ξ_k is said to belong to the domain of normal attraction of the stable distribution μ . We are interested in finding criteria which makes ν to belong to the domain of normal attraction of a stable distribution.

For the study of the above problem, it is more convenient to consider a sequence of *G*-valued stochastic processes $\varphi_t^{(n)} = \gamma_n^{-1}(\varphi_{(nt)})$ with continuous time parameter $t \in [0, \infty)$, instead of the sequence of *G*-valued random variables $\varphi^{(n)}$. If the sequence of the distributions of random variables $\varphi_t^{(n)}$ converges weakly for any t > 0, we say that the distributions of $\varphi_t^{(n)}$ converge weakly.

In order to introduce an assumption for the distribution π of $\eta_k \equiv \log \hat{\xi}_k$, we need a fact on the exponent Q of the dilation. Let g be the minimal polynomial of Q. It is factorized as $g = g_1^{l_1} \cdots g_p^{l_p}$, where g_1, \ldots, g_p are distinct irreducible monic polynomials and l_j are positive integers. Set $W_j = \operatorname{Ker}(g_j(Q)^{l_j}), j = 1, \ldots, p$. These are Q-invariant subspaces of \mathcal{G} and admits a direct sum decomposition $\mathcal{G} = \sum_j \bigoplus W_j$. Let $\kappa_j = \alpha_j \pm \sqrt{-1} \beta_j (\alpha_j, \beta_j \text{ are reals})$ be the roots of g_j (= eigen values of Q). We set

 $I = \{j ; \alpha_j = 1/2\}, J = \{j ; 1/2 < \alpha_j < \infty\}, J_1 = \{j ; 1/2 < \alpha_j < 1\}.$

The subspaces of \mathscr{G} are defined by $W_I = \bigoplus_{j \in I} W_j$ etc. and projectors to W_I , W_j etc. are denoted by T_{W_I} , T_{W_I} etc. We define

 $S = \{\theta \in \mathcal{G} : |\theta| = 1, |r^{\varphi}\theta| > 1 \text{ for all } r > 1\}.$ Then every $X \in \mathcal{G} (X \neq 0)$ is represented uniquely by $X = r^{\varphi}\theta$, where $\theta \in S$ and $r \in (0, \infty)$. We denote r and θ by r(X) and $\theta(X)$. We set $S_I = S \cap W_I$ and $S_J = S \cap W_J$.

Condition A. (1) $T_{W_I}X$ is square integrable with respect to π and $\int T_{W_I}X\pi(dX) = 0$. Further, $R \equiv \int T_{W_I}X \cdot (T_{W_I}X)'\pi(dX)$ is nondegenerate on W_I and satisfies QR + RQ' = R, where Q' is the transpose of Q.

(2) $T_{W_{I_1}}X$ is integrable with respect to π and $\int T_{W_{I_2}}X\pi(dX) = 0.$

(3) There exists a measure λ over S supported by S_I such that

(2.1) $\lim t \cdot \pi(\{r^{Q}\theta; \theta \in F, r > t\}) = \lambda(F)$

holds for any Borel set F in S_J such that $\lambda(\partial F) = 0$.

Theorem 2.1. Assume that real parts of eigen values of the exponent Q are all greater than or equal to 1/2 and are not equal to 1. If Condition Ais satisfied for the distribution $\pi = \log \nu$, then the distributions of $\varphi_t^{(n)}$ converge weakly. Let $\{\mu_t\}_{t>1}$ be the family of limit distributions. Then it is a convolution semigroup of stable distributions with respect to the dilation $\{\gamma_t\}_{t>0}$. Let L be the infinitesimal generator of the convolution semigroup. Then for any $f \in C^2$, Lf is represented by

(2.2)
$$Lf(\tau) = \frac{1}{2} \sum_{j,k} r_{jk} X_j X_k f(\tau) + \int_{\mathcal{G}_{-}(0)} (f(\tau \exp X) - f(\tau) - T_{W_{J_1}} X f(\tau)) M(dX).$$

Here, $\{X_1, \ldots, X_d\}$ is a basis of \mathcal{G} , (r_{jk}) is the matrix representation of the covariance R with respect to the basis, and M is the measure over $\mathcal{G} - \{0\}$ defined by

(2.3)
$$M(E) = \int_{S} \lambda(d\theta) \int_{(0,\infty)} \chi_{E}(r^{Q}\theta) r^{-2} dr.$$

Proof. Define an array of G-valued random variables $\xi_{n,k}$, n, k = 1, 2, ... by $\xi_{n,k} = \gamma_{1/n}(\xi_k)$. Then $\xi_{n,k} = \exp(d\gamma_{1/n}\eta_k) = \exp((1/n)^{\varrho}\eta_k)$. For each fixed n, these are independent identically distributed random variables. We have $\varphi_t^{(n)} = \xi_{n,1} \cdots \xi_{n,(nt)}$, because $\gamma_t(\sigma \tau) = \gamma_t(\sigma)\gamma_t(\tau)$ is satisfied. In order to prove the weak convergence of distributions of $\varphi_t^{(n)}$, we shall apply a result in Kunita [2]. Let π_n be the distribution of $(1/n)^{\varrho}\eta_k$ over \mathscr{G} . We denote by M_n the restriction of the measure $n\pi_n$ to the subset $\mathscr{G} - \{0\}$. For a fixed $\delta > 0$, we define a linear transformation $A_{\delta,n}$ over \mathscr{G} and a vector $B_{\delta,n} = (b_{\delta,n}^i)$ as follows.

(2.4)
$$A_{\delta,n} = n \int_{\{r(X) < \delta\}} X \cdot X' \pi_n(dX),$$
$$b_{\delta,n}^j = n \int_{\{r(X) < \delta\}} T_{W_j} X \pi_n(dX),$$

where $\{r(X) < \delta\} = \{X \in \mathcal{G}; r(X) < \delta\}$. We want to prove the following three:

(a) $\lim_{\delta \to 0} \limsup_{n \to \infty} ||A_{\delta,n} - R|| = 0$, where ||| is the norm of the linear transformation.

(b) The sequence of measures $\{M_n\}$ converges to M vaguely in the following sense.

$$\int_{\{r(X)<\varepsilon\}} f(X) M_n(dX) \to \int_{\{r(X)<\varepsilon\}} f(X) M(dX)$$

for any $0 < \varepsilon \le \infty$ and $f \in C_0(\pi)$. Here $C_0(\pi)$
is the set of all continuous functions f over
 $\mathscr{G} - \{0\}$ such that $\lim_{X\to 0} f(X) = 0$, $\lim_{X\to\infty} f(X)$

 $\mathcal{G} - \{0\} \text{ such that } \lim_{X \to 0} f(X) = 0, \lim_{X \to \infty} f(X)$ exists and $\left\{ \int |f(X) \log |f(X)| \| M_n(dX) \right\} \text{ is}$ bounded.

(c) The sequence of the vectors $\{B_{\delta,n}\}$ converges for any $\delta > 0$.

If these three properties are verified, then the sequence of the distributions of $\varphi_t^{(n)}$, $n = 1, 2, \ldots$ converges weakly and the family of the limit distributions is a convolution semigroup by a slight modification of Theorem 3 in [2]. It is in fact stable with respect to the given dilation. The representation (2.2) of the infinitesimal generator is shown in [3].

We shall first prove (a). Since

 $||A_{\delta,n} - R|| \le ||T_{W_I}A_{\delta,n}T'_{W_I} - R|| + 2||T_{W_I}A_{\delta,n}||,$ it is sufficient to prove that each term of the right hand side converges to 0 as $n \to \infty$ and $\delta \to 0$. Consider first $T_{W_I}A_{\delta,n}T'_{W_I} - R$. The matrix $A_{\delta,n}$ is written by

$$A_{\delta,n} = (1/n)^{Q^{-}(1/2)I} R_{\delta,n} (1/n)^{(Q^{-}(1/2)I)'}$$

where $R_{\delta,n} = \int_{\{r(X) < n\delta\}} X \cdot X' \pi(dX)$.

Let $R^{1/2}$ be a unique linear symmetric trasformation on \mathscr{G} such that $(R^{1/2})^2 = R$, $R^{1/2}W_I = W_I$ and $R^{1/2}W_I^{\perp} = 0$, where W_I^{\perp} is the orthogonal complement of W_I in \mathscr{G} . $R^{-1/2}$ is defined similarly. Then we have the equality

 $\begin{array}{l} T_{w_{I}}A_{\delta,n}T'_{w_{I}}-R=\\ R^{1/2}K_{n}R^{-1/2}(T_{W}R_{\delta,n}T'_{W}-R)R^{-1/2}K'_{n}R^{1/2},\\ \text{where } K_{n}=R^{-1/2}(1/n)^{(Q-(1/2)I)}R^{1/2}. \text{ It holds}\\ \|K_{n}\|\leq 1 \text{ for all } n. \text{ Indeed, the property } QR+RQ'\\ =R \text{ implies } t^{Q}Rt^{Q'}=tR \text{ or } t^{Q-(1/2)I}Rt^{(Q-(1/2)I)'}\\ =R \text{ for any } t>0, \text{ so that } K_{n}K'_{n}=T'_{W_{I}}. \text{ See Proposition } 4.3.3 \text{ in [1]. Now since } \|T_{W_{I}}R_{\delta,n}T'_{W_{I}}-R\|\\ \to 0 \text{ as } n\to\infty, \text{ we obtain } \|T_{W_{I}}A_{\delta,n}T'_{W_{I}}-R\|\to\\ 0 \text{ as } n\to\infty. \text{ We next consider } T_{W_{I}}A_{\delta,n}. \text{ By (2.4),}\\ \text{we have} \end{array}$

$$\|T_{W_{I}}A_{\delta,n}\|\leq \int_{S\times(0,\delta)}|T_{W_{I}}r^{Q}\theta|^{2}G_{n}(d\theta dr),$$

where $G_n(F_1 \times F_2) = M_n(\{\theta(X) \in F_1, r(X) \in F_2\})$. Let q be the minimum of α_j such that $\alpha_j > 1/2$. Note that

(2.5)
$$T_{W_j} r^{Q} \theta = \sum_{\substack{j \in J \\ k \neq 0}} \sum_{k=0}^{l_j-1} \frac{1}{k!} (\log r)^k \times (r^{k_j} (Q - \kappa_j)^k T_i \theta) + r^{k_j} (Q - \kappa_j)^k T_j \theta)$$

where T_j is the projector to $\operatorname{Ker}((Q - \kappa_j)^{l_j})$. Then for ε with $0 < \varepsilon < q - 1/2$, there is a positive constant c such that $|T_{W_j}r^Q\theta| \le cr^{q-\varepsilon}$ for all $\theta \in S$ and r < 1. Set $F_n(t) = G_n(S \times [t, \infty))$. Then $||T_{W_j}A_{\delta,n}||$ is dominated by Stable Limit Distributions

$$-c^{2}\int_{(0,\delta)}r^{2(q-\varepsilon)}F_{n}(dr) \leq c^{2}(\delta^{2(q-\varepsilon)}F_{n}(\delta) + 2(q-\varepsilon)\int_{0}^{\delta}t^{2(q-\varepsilon)-1}F_{n}(t)dt).$$

Since $F_n(t) = n\pi(\{r(X) > nt\})$, $\lim_{n\to\infty} F_n(t) = \lambda(S)t^{-1}$ holds for any t > 0 by Condition A (2). Therefore,

$$\limsup_{\substack{n\to\infty\\c^2\lambda(S)}} \|T_{W_f}A_{\delta,n}\| \le c^2\lambda(S)\left(\delta^{2(q-\varepsilon)-1}+2(q-\varepsilon)\int_0^\delta t^{2(q-\varepsilon)-2}dt\right)$$

which tends to 0 as $\delta \rightarrow 0$ because $2(q - \varepsilon) > 1$. We have thus proved the assertion (a).

We shall next prove (b). For any $\delta > 0$, we have

$$M_{n}(\{\theta(X) \in S_{I}, r(X) \geq \delta\})$$

$$\leq \frac{n}{\delta^{2}} \int_{(\theta(X) \in S_{I}, r(X) \geq \delta)} |T_{W_{I}}X|^{2} \pi_{n}(dX)$$

$$= \frac{1}{\delta^{2}} \operatorname{Tr}(R^{1/2}K_{n}R^{-1/2}(R - T_{W_{I}}R_{\delta, n}T'_{W_{I}})R^{-1/2}K'_{n}R^{1/2}).$$

It tends to 0 as $n \to \infty$. Then $\int f(X) M_n(dX)$ $\to 0$ as $n \to \infty$ if f is a function of the form

 $f(X) = f(T_{W_I}X)$. Now let F be a Borel set in S_f satisfying (2.1) and let

 $E = \{r^{Q}\theta : \theta \in F, a < r \le b\}.$ Then $\lim_{x \to \infty} M_r(E) = M(E)$. Indeed by Condi-

ion A (3), we have
$$\int (1 + 1) dx dx = \int (1 + 1) dx dx$$

$$\lim_{n\to\infty} M_n(E) = \int_F \lambda(d\theta) \left(\frac{1}{a} - \frac{1}{b}\right)$$
$$= \int_F \lambda(d\theta) \int_a^b \frac{1}{r^2} dr = M(E).$$

Then $\left\{\int f dM_n\right\}$ converges to $\int f dM$ if $f \in C_0(\pi)$ is of the form $f(X) = f(T_{W_I}X)$. Consequently, $\{M_n\}$ converges vaguely to M on $\mathcal{G} - \{0\}$.

Finally we shall prove (c). We first consider the case where $\alpha_j = 1/2$. Since the integral of $T_{W_j}X$ by M_n over \mathscr{G} is 0 by Condition A(1), we have

(2.6)
$$b_{\delta,n}^{j} = -\int_{\{r(X) \ge \delta\}} T_{W_{j}} X M_{n}(dX).$$

The domain $\{r(X) \ge \delta\}$ of the integral can be restricted to $\{\theta(X) \in S_I, r(X) \ge \delta\}$. Then by Schwarz's inequality,

$$|b_{\delta,n}^{j}| \leq \left(\int |T_{W_{j}}X|^{2}M_{n}(dX)\right)^{1/2} \times M_{n}(\{\theta(X) \in S_{I}, r(X) \geq \delta\})^{1/2}.$$

The first term of the right hand side is bounded in *n*. The second term converges to 0. Therfore for any $\delta > 0$, $\lim_{n\to\infty} b_{\delta,n}^j$ exists and is equal to 0 if $j \in I$. Next consider the case $1/2 < \alpha_j < 1$. By Condition A(2), $b_{\delta,n}^j$ is written as (2.6). Note the equality (2.5). Then for N > 0, the truncated function $f_N = (T_{W_j} r^Q \theta \land N) \lor (-N)$ belongs to $C_0(\pi)$. Therefore the limit of $b_{\delta,n}^j$ exists and is equal to $-\int_{\delta}^{\infty} \int_{S_j} T_{W_j} r^Q \theta \lambda(d\theta) r^{-2} dr$ for any $\delta > 0$. In the case where $\alpha_j > 1$, we can show similarly that $\lim_{n\to 0} b_{\delta,n}^j$ exists and is equal to $\int_0^{\delta} \int_{S_j} T_{W_j} r^Q \theta \lambda(d\theta) r^{-2} dr$ for any $\delta > 0$. The proof is complete.

The following corresponds to a central limit theorem on the Lie group.

Corollary 2.2. Assume that $\eta_k \equiv \log \xi_k$ is of mean 0 and has a finite nonsingular covariance RIf $A \equiv T_{W_I} R T'_{W_I}$ satisfies QA + AQ' = A, the distributions of $\varphi_{t}^{(n)}$ converge weakly. Let $\{\mu_i\}_{t>0}$ be the family of limit distributions. Then it is a convolution semigroup of stable distributions with respect to the dilation $\{\gamma_t\}_{t>0}$. Further its characteristics are given by (A, 0, 0).

References

- Z. J. Jurek and J. D. Mason: Operator-limit Distributions in Probability Theory. John Wiley and Sons, New York (1993).
- H. Kunita: Some theorems concerning Lévy processes on Lie groups. Stochastic Analysis (eds. Pinsky and Cranston). AMS series of Symposia in Pure Mathematics (to appear).
- [3] H. Kunita: Convolution semigroups of stable distributions over nilpotent Lie groups. Proc. Japan Acad., 70 A, 305-310 (1994).
- [4] M. Sharpe: Operator-stable distributions over vector groups. Trans. Amer. Math. Soc., 136, 51-65 (1969).

No. 1]

t