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§1. Let # be an upper half plane ,[’=
SL,(Z) and I, be the stabilizer of the cusp 79
of I The real analytic Eisenstein series
E(z, a) is defined by

Eiz a)= X (Imyz2)* forRea > 1.
rer \I

We put E*(z, @) = £2a)E(z, a) where &(s) =
7"’ I'(s/2)C(s) and {(s) is the Riemann zeta
function. It is well known that the function E*(z,
a) has a holomorphic continuation to all @ except
for simple poles at @ = 0 and 1 and satisfies the
functional equation E*(z, @) = E*(z,1 — ).
The Fourier expansion is given by
E*(z, @) = EQa)y” + £2 — 22)y" ™" +

2 Z I n |1/2—-a0_2a—1(| n |)y1/2Ka_1,2(27z l n , y)ezmnz.

n+0
Here, K,(z) denotes the so-called modified Bessel

function and o,(n) = X, d".
In [5], Vinogradov and Takhtadzhyan stu-
died the classical additive divisor problem

through the spectral theory of automorphic func-
tions. Namely they showed that the main term of
the integral

ol |
f f IE*(Z, 1/2) |2ysezﬂ'1kz£1#
0 0 y

is #°M(s/2)'T(s)™ X, dm)dn + k)n™° and
got the growth order of the last Dirichlet series
by the spectral theory of automorphic functions.

§2. We consider here the product of the
Eisenstein series and a cusp form and derive the
corresponding Dirichlet series. Let f(z) be a
Maass wave form with the parity ¢, and its
Fourier expansion be given by

f(Z) — ZO p(n)yl/zK,-,,(Zn' l n | Z/) e27rinx.

We assume that p®) = O( #|™) for some
7o > 0. Up to now, it is known that n, < 5/28.
(cf. [1])

For a natural integer k, we define

[k(s;a, f) Zf f E (z, a)f(z)ys 2mikx dxdy

Lemma 1. Let s be a complex number. If Re s

1s sufficiently large, we have

Lis;a, f) = Un'T(s) r(> 2= /21 0)

<s+a—1/2—z;c)r<s—a+1/2+ilc>
2

<s—a+1/2—zx>

2 O m+Kk)om) (s+a—1/2+ ik
X {Z_l : s+a—1/2 F( 2 ’
m= m
sta—1/2 — ik _(m+k)2)
2 S5 m
> O, (m—kDoGm)
+efm=§n¢k 2e=t s+a-1/2
(s+a—1/2+i;c s+ta—1/2 — ik
X F 2 , 2 3 S,

1= ("))
+e,0(k) @,(s; ),

where F(a, B, 7;X) is the hypergeometric function
and

ECa)
4(7rk)s+a-l/2
s+a—1/2 + s+ta—1/2 — ik
L Ll S .
E@2 — 2a) (s —a+1/2+ ilC)
4(nk)s—a+1/2 2
o F(s —a+1/2 — z/s:).
2
This lemma can be shown by the Fourier ex-
pansions of E*(z, @), f(2) and the following in-
tegral formula:

j; K,(np) K,(my)dy = 2°*m™*"n"I(s)™"

xF<S+u+u>r<s+ﬂ—v)r<s—ﬂ+u)

0ols, @) =

2 2 2
(=5
xF<s+g+#,S+;_ﬂ's;1-—(n/m)2).

(cf. [2] p. 93 (36))
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We now introduce a Dirichlet series, the
main term of I,. We put
$ Opqr(m + k) p(m)

D(s;a, f) = ;
m=1 m
e, $ Cpus (| m —Sk I)p(m).
m=1m+k m

This series converges absolutely for Res > 2
Rea+ n,if Rea=1/2, and Res > 1 + n, if
Re a < 1/2. If we write

Gla,B;7;2 =Fla,B;7;2 — 1,
then we have, by the power series expansion and
the integral expression of F,

Gla,B;71;2)
1
—Eézf Fla+1,B+1;r+ 1;20)dx

_al(p) _ ar-B-1
=T®IG—P * f f £a-9

X (1 — trz) ™" 'dtdr.
for Rey>ReB > — 1. So Lemma 1 can be
written as follows.

Proposition 1.
then we have

s—a 1
D,(s;a, f) =4r +1/21’<s —a+ —2—>

N (r,(s-zi/c)r<s—2i/c>r<s — 2a-2I-1 + i/c>

< (P2 (s - a+ i)

The wnotation being as above,

1

—-e,,o(k)<p0( a+2, ))—Rk(s;a,f)

whevre
+ k
RGs:af) =3 O (m : dolm)
m=1

s+ik s— ik 1 m + k\?
(g g s matgii= ("))
+e, & GZa-1(|m—sk|)P(m)x

m=1,m+k m

s+ik s— ik 1 m — k\?

G( 3 2 _“+§'1_< m ))

and is absolutely convergent for Re s > 2Re a —
1+n, if Rea=1/2, and Res > n, if Rea
< 1/2. Furthermore, we have
R, G;a,f) <<|Ims|2
The last statement can be obtained by the
Stirling formula of I" function.

§3. Let u,(2) = y/3/m, the constant func-
tion, and #,;(2) j = 1,2,... be Maass wave forms

constituting an orthonormal basis of cusp forms
of L*(F'\#) with eigenvalues 1/4 + k; of

[Vol. 71(A),

non-Euclidean Laplacian. Let the Fourier expan-
sion of u,(2) be .
u; () = X 0,y °K,, Cr|n|y)e™™.
n+0

The parity of #,;(2) is denoted by ¢;.
Lemma 2. For Res > 1/2 and Rea > 0,
we have

LG, o, ) = ml)ﬁ S &4, (@0, (k)
s—1/2 + i)\ (s—1/2 — ik
xI{ 2 )r( 2 )

1 ® k™ "a,,, (k)
+ 87 (rk)s™V? J:m Ale, 7 Q1 -|f 2ir)

Ay,

wheve

Ae) = a+ Zima) F(a + i(g + ,c,.))
N F(a + l(K.‘ — k) )F<a — z(/c /:,))
X F(a_ z(’f— ICJ))

Ala, ») = 1+ ¢e){2a) <a+z(2/c—|-r)>

471 — 2ir) .
F<a + z(zfc - r))r(a — z(zrc + r))

I’(ﬂi(;—_ﬁ)L(a, 7).

and L;(a) and L(a, r) are meromorphically con-
tinued functions which arve defined by

2 p(n)p](n) i o(n)o,;,(n)

n=1 n=1

forRea > 1 + 27}0 respectively.
By this formula, we can see that [,(s; a, f) is
meromorphically continued to all s. If H/,(s) de-
notes the Hecke series associated to f, we have

L, » = o) H/(a + é’?zlis(a ir)

§4. From now on, we assume that Re a >
1 + 21, We want to know the growth order of
I.s—a+1/2;a, f) when | Im s|— . First
we consider the discrete part. By the assumption
on a, the series L;(a) is absolutely convergent,
so we estimate it trivially and get

A,(a) <L exp<_ _725 IC) Kznea_%.

i j

X

X

a+ir

Let s= o+ it and ¢ = t — Im a. We divide the
sum on kj, into three parts, namely, x; < ¢ — ¢
log (), ' — clog(¥) < k; < t' + clog(t) and
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k; >t + clog(t) for some constant ¢ and use
the method of partial summation. We have

E)SjA,(a)p,(k) F(s - c;+ ixj)I,(s - az— ix,)

1
exp(— ~72£| tI) [¢]7*R* 2% ifg>Rea+1

<
1,.3
exp(—%l tI) | ¢[z72R* {0 <g<Rea+1

for any fixed € > 0. We note that for the first
two sums on k; we use the Kuznetsov's famous
result ([4]): )

| 0; (k) |
~x cosh 7x;

= 27°X° + 0(Xlog X + XK° + k7*9).
We can estimate the continuous part similarly
and see that it is smaller than the discrete one.
Estimates for ¢,(s — a + 1/2, a) and R, (s, @)
are easy. Hence, by Proposition 1, we get

Proposition 2. Let s = 0+ it and suppose
that Rea > 1+ 29, When |Ims|— o , we
have

D,(s;a, f)
1
< [l (2 ifo>Rea+ 1

| £[3Rea2741% 410 < g < Rea + 1
for any € > 0.
§6. We puto,=2a+n,+¢ — 1 and o,
= g, + 1 (¢ > 0). The Dirichlet series D, (s ; &)
is convergent absolutely on Re s = a,. Let R be a

x5
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rectangle with vertices o, — T, 0, + T, o, + T
and o, — iT. Considering the contour integral

S
x
f D.(s;a, f)T ds and using Perron’s formula
R

with suitable T, we get
Theorem. Assume that
then for any € > 0, we have
> A m+ k) + 6,050 m— k)}oGm)

m<x,m#*k

Rea > 1 + 29,

— O (xZRea+n0+e —1/(2Rea+3/2)) .
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