On Certain Dirichlet Series Obtained by the Product of Eisenstein Series and a Cusp Form

By Yoshio TANIGAWA
Department of Mathematics, School of Science, Nagoya University
(Communicated by Heisuke Hironaka, M. J. A., Feb. 13, 1995)

§1. Let \mathscr{H} be an upper half plane , $\Gamma=$ $S L_{2}(\boldsymbol{Z})$ and Γ_{∞} be the stabilizer of the cusp $i \infty$ of Γ. The real analytic Eisenstein series $E(z, \alpha)$ is defined by

$$
E(z, \alpha)=\sum_{r \in \Gamma_{\infty} \backslash I}(\operatorname{Im} \gamma z)^{\alpha} \text { for } \operatorname{Re} \alpha>1
$$

We put $E^{*}(z, \alpha) \stackrel{\substack{ \\\Gamma_{凶}}}{=} \xi(2 \alpha) E(z, \alpha)$ where $\xi(s)=$ $\pi^{-s / 2} \Gamma(s / 2) \zeta(s)$ and $\zeta(s)$ is the Riemann zeta function. It is well known that the function $E^{*}(z$, α) has a holomorphic continuation to all α except for simple poles at $\alpha=0$ and 1 and satisfies the functional equation $E^{*}(z, \alpha)=E^{*}(z, 1-\alpha)$. The Fourier expansion is given by

$$
\begin{gathered}
E^{*}(z, \alpha)=\xi(2 \alpha) y^{\alpha}+\xi(2-2 \alpha) y^{1-\alpha}+ \\
2 \sum_{n \neq 0}|n|^{1 / 2-\alpha} \sigma_{2 \alpha-1}(|n|) y^{1 / 2} K_{\alpha-1 / 2}(2 \pi|n| y) e^{2 \pi i n x} .
\end{gathered}
$$

Here, $K_{\nu}(z)$ denotes the so-called modified Bessel function and $\sigma_{\nu}(n)=\sum_{d \mid n} d^{\nu}$.

In [5], Vinogradov and Takhtadzhyan studied the classical additive divisor problem through the spectral theory of automorphic functions. Namely they showed that the main term of the integral

$$
\int_{0}^{\infty} \int_{0}^{1}\left|E^{*}(z, 1 / 2)\right|^{2} y^{s} e^{2 \pi i k z} \frac{d x d y}{y^{2}}
$$

is $\pi^{-s} \Gamma(s / 2)^{4} \Gamma(s)^{-1} \sum_{n=1}^{\infty} d(n) d(n+k) n^{-s}$ and got the growth order of the last Dirichlet series by the spectral theory of automorphic functions.
§2. We consider here the product of the Eisenstein series and a cusp form and derive the corresponding Dirichlet series. Let $f(z)$ be a Maass wave form with the parity ε_{f} and its Fourier expansion be given by

$$
f(z)=\sum_{n \neq 0} \rho(n) y^{1 / 2} K_{i x}(2 \pi|n| y) e^{2 \pi i n x}
$$

We assume that $\rho(n)=O\left(|n|^{n_{0}}\right)$ for some $\eta_{0}>0$. Up to now, it is known that $\eta_{0} \leq 5 / 28$. (cf. [1])

For a natural integer k, we define
$I_{k}(s ; \alpha, f)=\int_{0}^{\infty} \int_{0}^{1} E^{*}(z, \alpha) f(z) y^{s} e^{2 \pi i k x} \frac{d x d y}{y^{2}}$.
Lemma 1. Let s be a complex number. If $\operatorname{Re} s$
is sufficiently large, we have

$$
\begin{aligned}
& I_{k}(s ; \alpha, f)=\left(4 \pi^{s} \Gamma(s)\right)^{-1} \Gamma\left(\frac{s+\alpha-1 / 2+i \kappa}{2}\right) \\
& \times \Gamma\left(\frac{s+\alpha-1 / 2-i \kappa}{2}\right) \Gamma\left(\frac{s-\alpha+1 / 2+i \kappa}{2}\right) \\
& \times \Gamma\left(\frac{s-\alpha+1 / 2-i \kappa}{2}\right) \\
& \times\left\{\sum _ { m = 1 } ^ { \infty } \frac { \sigma _ { 2 \alpha - 1 } (m + k) \rho (m) } { m ^ { s + \alpha - 1 / 2 } } F \left(\frac{s+\alpha-1 / 2+i \kappa}{2},\right.\right. \\
& \left.+\frac{s+\alpha-1 / 2-i \kappa}{2} ; s ; 1-\left(\frac{m+k}{m}\right)^{2}\right) \\
& \times \varepsilon_{f} \sum_{m=1, m \neq k}^{\infty} \frac{\sigma_{2 \alpha-1}\left(\left|m^{2}-k\right|\right) \rho(m)}{m^{s+\alpha-1 / 2}} \\
& \times F\left(\frac{s+\alpha-1 / 2+i \kappa}{2}, \frac{s+\alpha-1 / 2-i \kappa}{2} ; s ;\right. \\
& \left.\left.1-\left(\frac{m-k}{m}\right)^{2}\right)\right\}
\end{aligned}
$$

$+\varepsilon_{f} \rho(k) \varphi_{0}(s ; \alpha)$,
where $F(\alpha, \beta, \gamma ; x)$ is the hypergeometric function and
$\varphi_{0}(s, \alpha)=\frac{\xi(2 \alpha)}{4(\pi k)^{s+\alpha-1 / 2}}$
$\times \Gamma\left(\frac{s+\alpha-1 / 2+i \kappa}{2}\right) \Gamma\left(\frac{s+\alpha-1 / 2-i \kappa}{2}\right)$
$+\frac{\xi(2-2 \alpha)}{4(\pi k)^{s-\alpha+1 / 2}} \Gamma\left(\frac{s-\alpha+1 / 2+i \kappa}{2}\right)$
$\times \Gamma\left(\frac{s-\alpha+1 / 2-i \kappa}{2}\right)$.
This lemma can be shown by the Fourier expansions of $E^{*}(z, \alpha), f(z)$ and the following integral formula:
$\int_{0}^{\infty} K_{\nu}(n y) K_{\mu}(m y) d y=2^{s-3} m^{-s-\nu} n^{\nu} \Gamma(s)^{-1}$
$\times \Gamma\left(\frac{s+\mu+\nu}{2}\right) \Gamma\left(\frac{s+\mu-\nu}{2}\right) \Gamma\left(\frac{s-\mu+\nu}{2}\right)$
$\times \Gamma\left(\frac{s-\mu-\nu}{2}\right)$
$\times F\left(\frac{s+\nu+\mu}{2}, \frac{s+\nu-\mu}{2} ; s ; 1-(n / m)^{2}\right)$.
(cf. [2] p. 93 (36))

We now introduce a Dirichlet series, the main term of I_{k}. We put

$$
\begin{aligned}
& D_{k}(s ;\alpha, f) \\
&=\sum_{m=1}^{\infty} \frac{\sigma_{2 \alpha-1}(m+k) \rho(m)}{m^{s}} \\
&+\varepsilon_{f} \\
& \sum_{m=1, m \neq k}^{\infty} \frac{\sigma_{2 \alpha-1}(|m-k|) \rho(m)}{m^{s}}
\end{aligned}
$$

This series converges absolutely for $\operatorname{Re} s>2$ $\operatorname{Re} \alpha+\eta_{0}$ if $\operatorname{Re} \alpha \geq 1 / 2$, and $\operatorname{Re} s>1+\eta_{0}$ if $\operatorname{Re} \alpha<1 / 2$. If we write

$$
G(\alpha, \beta ; \gamma ; z)=F(\alpha, \beta ; \gamma ; z)-1
$$

then we have, by the power series expansion and the integral expression of F,

$$
G(\alpha, \beta ; \gamma ; z)
$$

$$
\begin{aligned}
& =\frac{\alpha \beta}{\gamma} z \int_{0}^{1} F(\alpha+1, \beta+1 ; \gamma+1 ; z x) d x \\
& =\frac{\alpha \Gamma(\gamma)}{\Gamma(\beta) \Gamma(\gamma-\beta)} z \int_{0}^{1} \int_{0}^{1} t^{\beta}(1-t)^{\gamma-\beta-1}
\end{aligned}
$$

$$
\times(1-t x z)^{-\alpha-1} d t d x
$$

for $\operatorname{Re} \gamma>\operatorname{Re} \beta>-1$. So Lemma 1 can be written as follows.

Proposition 1. The notation being as above, then we have

$$
\begin{aligned}
& D_{k}(s ; \alpha, f)=4 \pi^{s-\alpha+1 / 2} \Gamma\left(s-\alpha+\frac{1}{2}\right) \\
& \times\left(\Gamma\left(\frac{s+i \kappa}{2}\right) \Gamma\left(\frac{s-i \kappa}{2}\right) \Gamma\left(\frac{s-2 \alpha+1+i \kappa}{2}\right)\right. \\
& \left.\times \Gamma\left(\frac{s-2 \alpha+1-i \kappa}{2}\right)\right)^{-1}\left(I_{k}\left(s-\alpha+\frac{1}{2} ; \alpha, f\right)\right. \\
& \left.\quad-\varepsilon_{f} \rho(k) \varphi_{0}\left(s-\alpha+\frac{1}{2}, \alpha\right)\right)-R_{k}(s ; \alpha, f)
\end{aligned}
$$

where
$R_{k}(s ; a, f)=\sum_{m=1}^{\infty} \frac{\sigma_{2 \alpha-1}(m+k) \rho(m)}{m^{s}} \times$
$G\left(\frac{s+i \kappa}{2}, \frac{s-i \kappa}{2} ; s-\alpha+\frac{1}{2} ; 1-\left(\frac{m+k}{m}\right)^{2}\right)$
$+\varepsilon_{f} \sum_{m=1, m \neq k}^{\infty} \frac{\sigma_{2 \alpha-1}(|m-k|) \rho(m)}{m^{s}} \times$
$G\left(\frac{s+i \kappa}{2}, \frac{s-i \kappa}{2} ; s-\alpha+\frac{1}{2} ; 1-\left(\frac{m-k}{m}\right)^{2}\right)$
and is absolutely convergent for $\operatorname{Re} s>2 \operatorname{Re} \alpha-$ $1+\eta_{0}$ if $\operatorname{Re} \alpha \geq 1 / 2$, and $\operatorname{Re} s>\eta_{0}$ if $\operatorname{Re} \alpha$ $<1 / 2$. Furthermore, we have

$$
\begin{aligned}
& R_{k}(s ; \alpha, f) \ll|\operatorname{Im} s|^{\frac{3}{2}} .
\end{aligned}
$$

The last statement can be obtained by the Stirling formula of Γ function.
§3. Let $u_{0}(z)=\sqrt{3 / \pi}$, the constant function, and $u_{j}(z) j=1,2, \ldots$ be Maass wave forms constituting an orthonormal basis of cusp forms of $L^{2}(\Gamma \backslash \mathscr{H})$ with eigenvalues $1 / 4+\kappa_{j}^{2}$ of
non-Euclidean Laplacian. Let the Fourier expansion of $u_{j}(z)$ be

$$
u_{j}(z)=\sum_{n \neq 0} \rho_{j}(n) y^{1 / 2} K_{i x_{j}}(2 \pi|n| y) e^{2 \pi i n x}
$$

The parity of $u_{j}(z)$ is denoted by ε_{j}.
Lemma 2. For $\operatorname{Re} s>1 / 2$ and $\operatorname{Re} \alpha>0$, we have

$$
\begin{aligned}
& I_{k}(s, \alpha, f)=\frac{1}{4(\pi k)^{s-1 / 2}} \sum_{j=1}^{\infty} \varepsilon_{j} A_{j}(\alpha) \rho_{j}(k) \\
& \times \Gamma\left(\frac{s-1 / 2+i \kappa_{j}}{2} \Gamma\left(\frac{s-1 / 2-i \kappa_{j}}{2}\right)\right. \\
& +\frac{1}{8 \pi(\pi k)^{s-1 / 2}} \int_{-\infty}^{\infty} A(\alpha, r) \frac{k^{-i r} \sigma_{2 i r}(k)}{\xi(1+2 i r)} \\
& \times \Gamma\left(\frac{s-1 / 2+i r}{2}\right) \Gamma\left(\frac{s-1 / 2-i r}{2}\right) d r .
\end{aligned}
$$

where

$$
\begin{aligned}
A_{j}(\alpha)= & \frac{\left(1+\varepsilon_{f} \varepsilon_{j}\right) \zeta(2 \alpha)}{4 \pi^{2 \alpha}} \Gamma\left(\frac{\alpha+i\left(\kappa+\kappa_{j}\right)}{2}\right) \\
& \times \Gamma\left(\frac{\alpha+i\left(\kappa-\kappa_{j}\right)}{2}\right) \Gamma\left(\frac{\alpha-i\left(\kappa+\kappa_{j}\right)}{2}\right) \\
& \times \Gamma\left(\frac{\alpha-i\left(\kappa-\kappa_{j}\right)}{2}\right) L_{j}(\alpha), \\
A(\alpha, r) & =\frac{\left(1+\varepsilon_{f}\right) \zeta(2 \alpha)}{4 \pi^{2 \alpha} \xi(1-2 i r)} \Gamma\left(\frac{\alpha+i(\kappa+r)}{2}\right) \\
& \times \Gamma\left(\frac{\alpha+i(\kappa-r)}{2}\right) \Gamma\left(\frac{\alpha-i(\kappa+r)}{2}\right) \\
& \times \Gamma\left(\frac{\alpha-i(\kappa-r)}{2}\right) L(\alpha, r) .
\end{aligned}
$$

and $L_{j}(\alpha)$ and $L(\alpha, r)$ are meromorphically continued functions which are defined by

$$
\sum_{n=1}^{\infty} \frac{\rho(n) \overline{\rho_{j}(n)}}{n^{\alpha}}, \quad \sum_{n=1}^{\infty} \frac{\rho(n) \sigma_{2 i r}(n)}{n^{\alpha+i r}}
$$

for $\operatorname{Re} \alpha>1+2 \eta_{0}$, respectively.
By this formula, we can see that $I_{k}(s ; \alpha, f)$ is meromorphically continued to all s. If $H_{f}(s)$ denotes the Hecke series associated to f, we have

$$
L(\alpha, r)=\rho(1) \frac{H_{f}(\alpha+i r) H_{f}(\alpha-i r)}{\zeta(2 \alpha)}
$$

§4. From now on, we assume that $\operatorname{Re} \alpha>$ $1+2 \eta_{0}$. We want to know the growth order of $I_{k}(s-\alpha+1 / 2 ; \alpha, f)$ when $|\operatorname{Im} s| \rightarrow \infty$. First we consider the discrete part. By the assumption on α, the series $L_{j}(\alpha)$ is absolutely convergent, so we estimate it trivially and get

$$
A_{j}(\alpha) \ll \exp \left(-\frac{\pi}{2} \kappa_{j}\right) \kappa_{j}^{2 \operatorname{Re} \alpha-\frac{3}{2}}
$$

Let $s=\sigma+i t$ and $t^{\prime}=t-\operatorname{Im} \alpha$. We divide the sum on κ_{j}, into three parts, namely, $\kappa_{j}<t^{\prime}-c$ $\log \left(t^{\prime}\right), t^{\prime}-c \log \left(t^{\prime}\right) \leq \kappa_{j} \leq t^{\prime}+c \log \left(t^{\prime}\right)$ and
$\kappa_{j}>t^{\prime}+c \log \left(t^{\prime}\right)$ for some constant c and use the method of partial summation. We have

$$
\sum_{j>0} \varepsilon_{j} A_{j}(\alpha) \rho_{j}(k) \Gamma\left(\frac{s-\alpha+i \kappa_{j}}{2}\right) \Gamma\left(\frac{s-\alpha-i \kappa_{j}}{2}\right)
$$

$$
\ll \begin{cases}\exp \left(-\frac{\pi}{2}|t|\right)|t|^{\sigma+\operatorname{Re} \alpha-\frac{1}{2}+\varepsilon} & \text { if } \sigma \geq \operatorname{Re} \alpha+1 \\ \exp \left(-\frac{\pi}{2}|t|\right)|t|^{\frac{1}{2} \sigma+\frac{3}{2} \mathrm{Re} \alpha+\varepsilon} & \text { if } 0<\sigma<\operatorname{Re} \alpha+1\end{cases}
$$

for any fixed $\varepsilon>0$. We note that for the first two sums on κ_{j}, we use the Kuznetsov's famous result ([4]):

$$
\begin{aligned}
& \sum_{x_{j} \leq X} \frac{\left|\rho_{j}(k)\right|^{2}}{\cosh \pi \kappa_{j}} \\
&=\pi^{-2} X^{2}+O\left(X \log X+X k^{\varepsilon}+k^{\frac{1}{2}+\varepsilon}\right) .
\end{aligned}
$$

We can estimate the continuous part similarly and see that it is smaller than the discrete one. Estimates for $\varphi_{0}(s-\alpha+1 / 2, \alpha)$ and $R_{k}(s, \alpha)$ are easy. Hence, by Proposition 1, we get

Proposition 2. Let $s=\sigma+$ it and suppose that $\operatorname{Re} \alpha>1+2 \eta_{0}$. When $|\operatorname{Im} s| \rightarrow \infty$, we have
$D_{k}(s ; \alpha, f)$

$$
\ll \begin{cases}|t|^{2 \operatorname{Re} e+\frac{1}{2}+\varepsilon} & \text { if } \sigma \geq \operatorname{Re} \alpha+1 \\ |t|^{\frac{5}{2} \operatorname{Re} \alpha-\frac{1}{2} \sigma+1+\varepsilon} & \text { if } 0<\sigma<\operatorname{Re} \alpha+1\end{cases}
$$

for any $\varepsilon>0$.
85. We put $\sigma_{1}=2 \alpha+\eta_{0}+\varepsilon^{\prime}-1$ and σ_{2} $=\sigma_{1}+1\left(\varepsilon^{\prime}>0\right)$. The Dirichlet series $D_{k}(s ; \alpha)$ is convergent absolutely on $\operatorname{Re} s=\sigma_{2}$. Let \mathscr{R} be a
rectangle with vertices $\sigma_{2}-i T, \sigma_{2}+i T, \sigma_{1}+i T$ and $\sigma_{1}-i T$. Considering the contour integral $\int_{\mathscr{R}} D_{k}(s ; \alpha, f) \frac{x^{s}}{s} d s$ and using Perron's formula with suitable T, we get

Theorem. Assume that $\operatorname{Re} \alpha>1+2 \eta_{0}$, then for any $\varepsilon>0$, we have

$$
\begin{array}{r}
\sum_{\leq x, m \neq k}\left\{\sigma_{2 \alpha-1}(m+k)+\varepsilon_{f} \sigma_{2 \alpha-1}(|m-k|)\right\} \rho(m) \\
=O\left(x^{2 \operatorname{Re} \alpha+n_{0}+\varepsilon-1 /(2 \operatorname{Re} \alpha+3 / 2)}\right) .
\end{array}
$$

References

[1] D. Bump, W. Duke, J. Hoffstein and H. Iwaniec: An estimate for the Hecke eigenvalues of Maass forms. International Math. Research Notices, no. 4, pp. 75-81 (1992).
[2] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi: Higher Transcendental Functions. vol 2, McGraw-Hill (1953).
[3] M. Jutila: The additive divisor problem and its analogs for Fourier coefficients of cusp forms (1993) (preprint).
[4] N. V. Kuznetsov: Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums. Math. USSR-Sbornik, vol. 39, pp. 299-342 (1981).
[5] A. I. Vinogradov and L. A. Takhtadzhyan: The zeta function of the additive divisor problem and spectral decomposition of the automorphic Laplacian. Zap. Nauch. Sem. LOMI, 134, 84-116 (1984).

