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1. Let be an upper half plane ,F:
SL2(Z) and F= be the stabilizer of the cusp io
of F. The real analytic Eisenstein series
E(z, c) is defined by

E(z,a) (Imz)forRea> 1.

We put E*(z, a) (2a)E(z,
-szF(s/2)(s) and (s) is the Riemann zeta
function. It is well known that the function E*(z,
) has a holomorphic continuation to all a except
for simple poles at a 0 and 1 and satisfies the
functional equation E*(z,
The Fourier expansion is given by

E*(z, a) (2a) + (2

Here, Kv(z) denotes the so-called modified Bessel
function and av(n) aln

In [5], Vinogradov and Takhtadzhyan stu-
died the classical additive divisor problem
through the spectral theory of automorphic func-
tions. Namely they showed that the main term of
the integral

1 2ySe2,kdxdyE*(z 1/2)
Y

is -F(s/2)4F(s)- X:= d(n)d(n + k)n- and
got the growth order of the last Dirichlet series
by the spectral theory of automorphic functions.

2. We consider here the product of the
Eisenstein series and a cusp form and derive the
corresponding Dirichlet series. Let f(z)be a
Maass wave form with the parity e] and its
Fourier expansion be given by

1/2K 2gix

f(z) X p(n)y __,(2 n y)e

We assume that p(n) O([ n [,o) for some

o > 0. Up to now, it is known that Uo g 5/28.

(cf. [l)
For a natural integer k, we define

I (s a, f) E* (z, a) f(z)y e
Y

Lemma 1. Let s be a complex number. If Re s

is sufficiently large, we have

rcSF(s) )-iF{ + a 1/2 + ix )(s. f) (4 2

F( 2 itc)F(S--C+21/2+ ix)

-1 m
s+"-/ 2

+ s+-l/2
=l,ek

F/s+- 1/2 + i s + -- 1/2 i
2 2 ;s;

+so(k)o(s ;),
where F(, , r z) is the hypergeometric function
and

Po (s, )
4(k)s+-/

4(k)s_+/
F 2

2 ]
This lemma can be shown by the Fourier ex-

pansions of E*(z, c), f(z) and the following in-
tegral formula:

K(ny)Ku (my) dy 2S-m--nF(s)

F( s-p-2 )
x F(,s++p2

s+u--p )2 ;s;1-- (n/m)

(cf. [21 p. 93 (36))
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We now introduce a Dirichlet series, the
main term of Ik. We put

D(s’a f)
a_(m+ k)p(m)

m-1 m
a_(] m- k I)p(m).+ 8f

m=l,mk

This series converges absolutely for Re s > 2
Re+0 ifRea 1/2, and Res > 1o if
Re a < 1/2. If we write

G(a, fl;T;z) F(a, fl;T;z) 1,
then we have, by the power series expansion and
the integral expression of F,

G(a, fl ;r;z)
B F(+I B+l"r+l"x)dx

aF(r)
F(fl)F(T-- fl) Z fo fo

for ReT> Refl> 1.
written as follows.

t’ (1 t) r-,-

(1 txz) --dtdx.
So Lemma 1 can be

Prolmsition 1. The notation being as above,
then we have

D(s;a, f) 4cs-+/F(s a + 1/2)
,-- ,ixlF(s--2 )F(s-2a+12 +ix

xF(s--2a+l--i))-(I(2 s--a+;a,l f)

where

R(s a, f) a.,_x(m + k)n(m)
$

m--1

’ 2 ;s-+g;1-

’ 2 ;s-+g;1-

m+k))m

m m- k))
and is absolutely convergent for Re s > 2Re a-
1 + rio if Re cr _> 1/2, and Re s > o if Re a
< 1/2. Furthermore, we have

R,(s;a, f) << Im s .
The last statement can be obtained by the

Stirling formula of F function.

3. Let Uo(Z)- /3/r, the constant func-
tion, and uj(z)j- 1,2,... be Maass wave forms
constituting an orthonormal basis of cusp forms

2of L(F\) with eigenvalues 1/4 + xj of

non-Euclidean Laplacian. Let the Fourier expan-
sion of u(z) be

u (z) X p(n) y ,, (2r n Y) e
.o

The parity of u(z) is denoted by e.
Lemma 2. For Re s > 1/2 and Re a > O,

we have

Ik(s, ct, f)
1 Z eAj(a)p(k)

4 (rck) s-/.

+ 1 A(a, r)
k-ir

87r(k)-/ (1 + 2it)

F(s--1/2+ir) (s--1/2--it)dr2 F 2
where

A,(a)
(1 + e,e,)(2a)4r F(a + i(x2 +

F(a+ i(x2 x) )F(a i(x2 + x)

x F(ct-i(-’))2 L(ct),

(1 + e)(2a) F[.a + i(x + r).A(a, r)
4r"(1 2it) \ 2

F(.a + i(x- r) i(x + r)

2
and L(o) and L(o, r)are meromorphically con-
tinued functions which are defined by

p(n)p(n) p(n)a,,(n)
a a+ir

n=l n n=l

for Re cr > I + 2r/o, respectively.
By this formula, we can see that Iu(s ;c, f)is
meromorphically continued to all s. If H,(s) de-
notes the Hecke series associated to f, we have

L(cr, r) p(1) H(a + ir)H(a- ir)
(2a)

{}4. From now on, we assume that Re cr >
1 + 2U0. We want to know the growth order of
I(s cr + 1/2 or, f) when Ims l--* co. First
we consider the discrete part. By the assumption
on or, the series Lj(o)is absolutely convergent,
so we estimate it trivially and get

A/(a) << exp(Kj) 2Rea-23-

Let s a + it and t’ t- Im a. We divide the
sum on xy, into three parts, namely, xy < t’--c
log (t’), t’ clog(t0 x <_ t’ + clog(t0 and
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Xj :> t’+ clog(t’)for some constant c and use
the method of partial summation. We have

exp(---ltl) lt if a>-- Rea+ 1

exp--ltl t if0<a<Re+l

for any fixed > 0. We note that for the first
two sums on :j, we use the Kuznetsov’s famous
result ([4]):

Z cosh

+ O(Xlog X + Xk + k+).
We can estimate the continuous part similarly
and see that it is smaller than the discrete one.
Estimates for o(S + 1/2, ) and R,(s, )
are easy. Hence, by Proposition 1, we get

Prosition 2. Let s a + it and suppose
that Rea 1+2o. When Ims] we
have
D,(s a, f)

[]t]"++ if a 2 Re a + 1

]t]"-++ if0< a<Rea+l
for any e > O.

5. We put al= 2a+o+e’- 1 and a
a + 1 (e’ 0). The Dirichlet series D,(s ;a)

is convergent absolutely on Re s a. Let be a

rectangle with vertices ae- iT, a + iT, a + iT
and 0" --iT. Considering the contour integral

D(s , f)--S-ds and using Perron’s formula

with suitable T, we get
Theorem. Assume that Re c > 1 + 20,

then for any O, we have
E (a.,_(m + k) + a,_(I m k I) } p(m)

mx,mk
O(x2Re"+’o+-l/(2Re"+3/2)).
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